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Proton Drivers for Plasma Wakefield Acceleration

Proton bunches as drivers of plasma wakefields are interesting because of the very large energy content of
the proton bunches.

Drive beams: Witness beams:
Lasers: ~40 J/pulse Electrons: 1019 particles @ 1 TeV ~few kJ

Electron drive beam: 30 J/bunch
Proton drive beam: SPS 19kJ/pulse, LHC 300kJ/bunch

To reach TeV scale:

* Electron/laser driven PWA: need several stages, and challenging wrt to relative timing, tolerances,
matching, etc...

» effective gradient reduced because of long sections between accelerating elements....

Plasma cell Plasma cell Plasma cell Plasma cell Plasma cell Plasma cell Witness beam

Drive beam: electron/laser

* Proton drivers: large energy content in proton bunches = allows to consider single stage acceleration

Plasma cell Witness beam

Drive beam: protons




Self-Modulation Instability

In order to create plasma wakefields efficiently, the drive bunch length has to be in the order of the

plasma wavelength. N. Kumar, A. Pukhov, K. Lotov,
— CERN SPS proton bunch: very long! PRL 104, 255003 (2010)
Longitudinal beam size (G, = 12 cm) is much longer than plasma wavelength (A = 1mm)

Self-Modulation Instability
— Modulate long bunch to produce a series of ‘micro-bunches’ in a plasma with a spacing of plasma wavelength A ..

- Strong self-modulation effect of proton beam due to transverse wakefield in plasma

- Resonantly drives the longitudinal wakefield
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AWAKE at CERN
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AWAKE Experimental Program Run 1, 2016/17

Phase 1: Understand the physics of self-modulation instability processes in plasma.

Proton
beam

dump
Proton diagnostics

> BTV,OTR, CTR
plasma gas SMI dump
—_ S proton bunch ">
laser pulse

Self-modulated proton bunch resonantly driving plasma wakefields.

Short laser pulse B No plasma What we want to see

Wake potential protons

W N 00 < oo
- !

K. Riegler, MPP
Second half of the proton bunch sees plasma (Sd) oWl | g

4-02 0 0204
Transverse Size (cm)

kp =1.2 mm

8 A. Petrenko, CERN 7
®



AWAKE Experimental Program Run 1, 2017/18

Phase 1: Understand the physics of self-modulation instability processes in plasma.

Phase 2: Probe the accelerating wakefields with externally injected electrons.
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The AWAKE Facility

CERN NEUTRINOS TO GRAN SASSO
Underground structures at CERN
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Protons
from SPS

AWAKE Proton Beam Line

Change of the proton beam line in

Laser
Merging

Parameter Protons the downstream part (~80m) remt
Momentum [MeV/c] 400 000 - e.g. create a chicane for the laser Ccton
Momentum spread [%o] +0.035 merging integration Source
Particles per bunch 3.10!! s [T i
Charge per bunch [nC] 48 me N HNU 1 “iaserbeam [

Bunch length [mm] 120 (0.4 ns) | m 1

Norm. emittance [mm-mrad] 3.5 . :zf\\ 7 iiTe s

Repetition rate [Hz] 0.033 e \N_ 1 |

|l o- spot size at focal point [ um] 200 £20 -0.9) \i‘”’“” h
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Laser and Laser Line

Laser beam line to plasma cel
e A=780nm
* tpulse=100-120fs
* E=450ml)

Diagnostic beam line (“virtua
— A =780 nm
-t pulse 3100"T20 fs,

This installation requires

- E ~ 5 n’ﬁdobe Acrobat Reader

.0 or Adobe Acrobat 7.0

* Laser beam [ine toefection g

i i f -in.
2017) Adobe products are able.
on Adobe web site:
o ﬂ = 260 [Yyy.adobe.com
e tpulse=0.3-10ps

 E=05mJ

infos@seemage.com

Protons from SPS

Laser
insertion
Point

Electron
[ Source .

Start of Plasma’
Cell
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The AWAKE Plasma Cell

maximum acceleration direction
i i . of beam
E. Oez, P. Muggli, MPP, Munich —eE. deceleration Sropagation

E—

10 m long, 4 cm diameter
Rubidium vapor, field ionization threshold ~10'? W/cm?
Density adjustable from 1014 - 10> cm3 = 7x 104 cm3

Requirements:

* density uniformity better than 0.2% Plasma density profile
* Fluid-heated system (~220 deg) fewﬂ4 10m <5
* Complex control system: 79 Temperature probes, valves : //

e Transition between plasma and vacuum as sharp as possible
// . . >

defocusing electron beam

n=rn

Plasma density

S~ _— Upstream Expansion Chamber

Circulatioh of Galden HT270
at 210 [°C] ik plasma cell
Heating/Pumping System

|« \

-

= Pheema cellin BWAKE tuptel

Downstream Expansion Chamber
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Self-Modulation Instability Diagnostics |

SPS <y P
proto

J=14 BTVL 1.0 Zeld BTVZ

IndireCt SMI diagnOStiCS: 13f  maxr s 5196 mm :: 15| maxre 10 0.9

Image protons that got defocused by the strong P . o
plasma wakefields. ‘

_. ., \_
Demaity /e
m
5 v o =

Two imaging stations (IS) to measure the radial proton beam
distribution 2 and 10 m downstream the end of the plasma.

—> Compare transverse size of beam with and without plasma.
- Growth of tails governed by the transverse fields in the plasma.

M. Turner, TUPIKOO1
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Self-Modulation Instability Diagnostics i

10m 1S

Proton
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Measure frequency of modulation.

OTR: Optical Transition Radiation: Temporal intensity of the OTR carries
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Self-Modulation Instability Diagnostics i

10m 1st IS

SPS p T « | o === == —
protons >/ \ ESS e I T rT e R E ey = = e = - -
. . . = = = = =) Laser Laser
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Measure frequency of modulation.
OTR: Optical Transition Radiation: Temporal intensity of the OTR carries
o, ~ 400 ps CTR & TCTR . . 1
P T / information on bunch longitudinal structure.
* - CTR: Coherent Transition Radiation: Radiation is coherent for
'0-bunches (90-300GHz).
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AWAKE Beam Commissioning 2016

i . BTV.400343 B
3 periods of commissioning: 15.6.2016 : BTV.412442
June, September, November 2016 1st AWAKE cycle | 13'2\,2\,(225
extraction from | T .— beam
SPS in TT41

T’ TT41

SPS

N/
AWAKE
C. Bracco, J. Schmidt, CERN

Proton beam line commissioned and running stable with full intensity and matching specifications

- Optimized trajectory at experiment: Standard deviation during stability run of ~60 um
—> Stable beam at full intensity 3E11 p/bunch
- No beam losses at laser merging mirror /

17




Results Laser Beam Commissioning

10m plasma cell 1s41S (BTV)

24 s
[
U

= R Pr
/u ) T i beam
e P = == mm == == == - dump
BTVstreak Mi OTRstreak Laser

SPS Prot
protons rroton dump
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=» Transversal alignment of proton and laser beam (spatial overlap)
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Results Laser Beam Commissioning
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Result Proton and Laser Beam Synchronization

1st S 2nd S
> |_| Proton

p »
E |_| e beam
< P = = = = = = — OTR i
SPS BTV ireak smi Acceleration streak Laser

protons .Proton. dump
diagnostics

BTV 10m plasma cell

> SPS proton beam synchronized with AWAKE laser within ~20ps accuracy

Laser Timing

1000 _ =
500 <. Rieger, MESSs S. Mazzoni MOPAB119
2 600 J. Schmidt, TUPIK032
Q
.§ 400 V. Olsen, TUPIKO61
200

J. Schmidt, THPABO50

a 3 Back
-8-6-4-20 2 4 6 8
Transverse Beam direction (mm)
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Indirect SMI Measurement Results

SPS D Proton
. beam
protons
dump

M. Turner, CERN
Turner et al., NIMA 854, 100(2017)

2016/12/10 03:03:54.866167

10 . | 10 2016/12/12 01:30:54.866009
4 .M. Furner, CERN L : .7 *M:Turner, CERN
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- p* defocused by the transverse wakefield (SMI) form a halo
- p* focused form a tighter core

— Estimate of the transverse wakefields amplitude (JW ,,dr)



Direct SMI Measurements, OTR

SPS o)

Proton
e beam

Streak camera Images K. Rieger, MPP

Laser and Rb Lar and Rb

Laser Timing
R K. Rieger, MPP G Front 1000 K. Rieger, MPP , 200 . Rieger, MPP g Vapor
800 k- 800 150 -3

2 600 2 600 a

£ 400 £ 400 g o0 xS

~ 200 : ~ 200 ~ 50 S

1ns £y Back o o oo
Oe6—a4=2 0 2 4 6 B8 ~8—-6-4—-20 2 4 6 8 -8-6-4-20 2 4 6 8
Transverse Beam direction (mm) Transverse Beam direction (mm) Transverse Beam direction (mm)
X105
. . 7| K.Rieger, MPP Signal FFT
— Timing at the ps scale 2 Ng=1.34x10%cm™3 =» f  =103.7GHz o et Seclarnd FET ey
- . L meeees 09% Confidence
- Effect starts at laser timing = FFT peak at f,,,;=99.7GHz™f, L | fnoe=99.7GHz
- Density modulation at the 10ps-scale visible = Ofger=4.5GHz : 8-
S A
-> Successful first SMI physics run: 48h = L ,f |
. . L fioa 0 .
-> Operation at low plasma density: ~1.5x10%%cm3 = ANA A WA e
| W A Oy 'M-“r-f'-\\;\:r"w-’-‘-“*;,-_?\;f“\ﬂyf\m-”\_x

E. Oz, TUPIKO15 R 100 200 300 400 500

- SMI signal detected on all three diagnostics (IS, OTR, CTR)
Frequency (GHz)
=» 2017: further investigation of SMI /
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Completely new beam line and tunnel: !&

Electron Source and Beam Line

4 Protons

: from SPS Range for upgrade
e Electron beam Baseline

& Laser phase

A. Martinez, WEPVA105

“P"girrf’ting Momentum 16 MeV/c 10-20 MeV
1 Electrons/bunch (bunch charge) 1.25 E9 0.6-6.25E9
A Bunch charge 0.2 nC 0.1-1nC
’ Electron
Source Bunch length g, =4ps (1.2mm) 0.3-10ps
(Phase 2) , .
Bunch size at focus 0y =250 um 0.25-1mm
Mormalized emittance (r.m.s.) 2 mm mrad 0.5 =5 mm mrad
Relative energy spread Ap/p=0.5% <0.5%

Start of

4 Plasma 7@"
qr A

" 7 ' : :
" _“&A' |
= g 1

|

Y J/ ) ‘ e
J -, Electron gun‘installed

Horizontal angle of 60 deg,

20% slope of the electron tunnel>A=1.16m
5.66% slope of the plasma cell

~5 m common beam line of e  and p.

Electron beam line installation ongoing
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AWAKE Electron Acceleration Diagnostics
-

Proton
beam
dump

A 4

—/

<
SPS SMI Acceleration

Proton diagnostics Laser
OTR, CTR, TCTR

protons dump

L. Deacon, UCL

270
%2&0

= 250

240

1150 1200 1250 13200
X pixela
Dispersed electron impact on scintillator screen.
Scintillator screen Resulting light collected with intensified CCD camera.

%-level energy resolution achieved with a S/N ratio larger than 1000:1

> Start commissioning end 2017
Physics in 2018

- .

Electron spectrometer installa@, looking downstream
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AWAKE Proposal Run 2

Preliminary Run 2 electron beam parameters

Goals:

* Accelerate an electron beam to high energy

* Preserve electron beam quality as well as possible

* Demonstrate scalability of the AWAKE concept

| Parameter [ Value
Acc. gradient =>0.5 GV/m
Energy gain 10 GeV
Injection energy = 50 MeV
Bunch length, rms 4060 pm (120180 fs)
Peak current 200400 A
Bunch charge 67-200 pC
Final energy spread, rms few %o
Final emittance < 10 ym

Bunch compression, increased acceleration
e (~100 fs, > 20 MeV)

10m plasma

e” emittance
measurement

Optimized
SPS
proton

Acceleration BTV,OTR, CTR

After Run 2: get ready for first applications:

* Use bunches from SPS with 3.5 E11 protons every ~5sec, electron
beam of up to O (50GeV).

Using the LHC beam as a driver, TeV electron beams are possible.

Proton diagnostics

e spectrometer

Proton

beam
dump

dump
e ep
[ re— & I
dump / accelerator dumj

VHEeP: A. Caldwell and M. Wing, Eur. Phys. J. C 76,(2016) 463



Summary

 AWAKE is a proton driven plasma wakefield experiment at CERN

* AWAKE aims accelerating electrons with ~1 GV/m gradient using self-modulation instability of
a long proton bunch in a plasma (c,>>A

pe
* The AWAKE facility was successfully commissioned

* First signs of SMI were seen on all three diagnostics during a 48hr run in December 2016
—> further investigation in 2017

* Electron acceleration experiment: commissioning end 2017, physics in 2018
* Run 2 is proposed for after 2020: preserve electron beam quality, scalability

 First studies on applications of p-driven PWFA



