Author: Gai, W.
Paper Title Page
MOPIK017 Simultaneous Generation of Drive and Witness Beam for Collinear Wakefield Acceleration 535
 
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • M.E. Conde, D.S. Doran, W. Gai, J.G. Power
    ANL, Argonne, Illinois, USA
 
  Funding: This work is supported by Department of Energy, Office of High Energy Physics, under Contract No. DE-AC02-06CH11357.
Generating the drive and witness bunch for collinear wakefield acceleration (CWFA) requires precise control of the longitudinal bunch shape for each bunch as well as the controlling their separation. The emittance exchange (EEX) beamline and a transverse mask can be used to achieve all of these requirements. First, this EEX-based method can independently control the longitudinal bunch shape of each bunches so that the drive bunch is shaped to generate a high transformer ratio while witness bunch is shaped to suppress its energy spread. Second, the timing jitter between the drive and witness bunch poses a serious limitation to the CWFA scheme but the EEX-based method eliminates this since both bunches are generated at the same time and share the exactly same beamline so there are no relative errors. In this paper, we confirm the feasibility of this EEX-based method for simultaneous generation with simulation for CWFA in a dielectric structure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB074 Measurements of Thermal Emittance for Cesium Telluride Photocathodes in an L-Band RF Gun 1491
 
  • L.M. Zheng, W. Gai, C.-X. Tang
    TUB, Beijing, People's Republic of China
  • W. Gai, C.-J. Jing, W. Liu, N.R. Neveu, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • W. Liu
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  The thermal emittance is a major contributor to the final emittance of an electron beam in a photocathode RF gun. In this paper we present measurement results of thermal emittance for the cesium telluride photocathode at the Argonne Wakefield Accelerator (AWA) facility using the quadrupole scan method. Measurements of the thermal emittance vs. the laser spot size are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB075 Compact High Energy Electron Radiography System Based on Permanent Magnet Quadrupole 1494
 
  • Z. Zhou, Y.-C. Du, W. Gai, W.-H. Huang, F. Li, T. Rui, C.-X. Tang
    TUB, Beijing, People's Republic of China
  • W. Gai
    ANL, Argonne, Illinois, USA
 
  High energy electron radiography(HEER) is a promising diagnostic method for High Energy Density Physics (HEDP) or Inertial Confinement Fusion (ICF) owing to its capability of picosecond-nanometer spatio-temporal resolution, and is cost-effective in the meantime. A Compact HEER (CHEER) system based on Permanent Magnet Quadrupoles (PMQ) instead of conventional electromagnetic quadrupole is proposed. Its lattice design and beam optics optimization is finished, and experiment is to be carried out on Tsinghua Thomson X-ray source (TTX) beamline after PMQs fabrication and installation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB132 Research Program and Recent Results at the Argonne Wakefield Accelerator Facility (AWA) 2885
 
  • M.E. Conde, S.P. Antipov, D.S. Doran, W. Gai, Q. Gao, G. Ha, C.-J. Jing, W. Liu, N.R. Neveu, J.G. Power, J.Q. Qiu, J.H. Shao, Y.R. Wang, C. Whiteford, E.E. Wisniewski, L.M. Zheng
    ANL, Argonne, Illinois, USA
  • S.P. Antipov, C.-J. Jing, J.Q. Qiu
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • Q. Gao, L.M. Zheng
    TUB, Beijing, People's Republic of China
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • N.R. Neveu
    IIT, Chicago, Illinois, USA
  • Y.R. Wang
    IMP/CAS, Lanzhou, People's Republic of China
 
  Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-06CH11357
We give an overview of the research program at the Argonne Wakefield Accelerator Facility (AWA), including some highlights of recent experiments. The AWA facility is dedicated to the study of beam physics and the development of technology for future particle accelerators. Two independent electron linacs are used to study wakefield acceleration: 70 MeV high charge electron bunches of up to 100 nC are used to drive wakefields, which can be probed by bunches originating from the same linac or from the 15 MeV linac. Recent Two-Beam-Acceleration (TBA) experiments operating at 11.7 GHz reached accelerating gradients of up to 150 MV/m. No indication of witness beam quality degradation was observed, and bunch charge was preserved during the acceleration process. Two identical TBA setups were used in series in order to demonstrate staging capabilities. Dielectric loaded structures operating at 26 GHz are also used in TBA experiments. Another main thrust of the research program consists of exploring and developing techniques to manipulate the phase space of electron bunches. These efforts include bunch shaping and the exchange of emittances in the transverse and the longitudinal phase spaces
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB132  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA022 RECENT TWO-BEAM ACCELERATION ACTIVITIES AT ARGONNE WAKEFIELD ACCELERATOR FACILITY 3305
 
  • J.H. Shao, S.P. Antipov, M.E. Conde, W. Gai, Q. Gao, G. Ha, W. Liu, N.R. Neveu, J.G. Power, Y.R. Wang, E.E. Wisniewski, L.M. Zheng
    ANL, Argonne, Illinois, USA
  • C.-J. Jing, J.Q. Qiu
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • J. Shi, D. Wang
    TUB, Beijing, People's Republic of China
 
  The Two-Beam Acceleration (TBA) is a modified approach to the structure-based wakefield acceleration which may meet the luminosity, efficiency, and cost requirement of a future linear collider. Recently, various TBA experiments have been carried out at the Argonne Wakefield Accelerator Facility (AWA). With X-band metallic power extractors and accelerators, a 70 MeV/m average accelerating gradient has been demonstrated in two stages while a 150 MeV/m gradient as well as 300 MW extracted power have been achieved in a single stage. In addition, low cost K-band dielectric power extractor and accelerator have also been developed. The preliminary results show power extraction of 55 MW and an average accelerating gradient of 28 MeV/m.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB062 Preliminary Simulations on Chirpless Bunch Compression using Double-EEX Beamline 3862
 
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • M.E. Conde, D.S. Doran, W. Gai, J.G. Power
    ANL, Argonne, Illinois, USA
 
  Funding: This work is supported by Department of Energy, Office of High Energy Physics, under Contract No. DE-AC02-06CH11357.
An emittance exchange (EEX) beamline can be used to compress an electron bunch via its transverse-to-longitudinal exchange mechanism. We are investigating this as an alternative to the normal magnetic chicane bunch compressor. The chicane method requires a longitudinal chirp before the chicane (since it relies on the path length difference of different energies) which results in an unwanted chirp after the compressor. Alternatively, the EEX method uses quadrupole magnets to compress the bunch. In this paper, we present preliminary simulations in preparation for a demonstration of chirp-less bunch compression using an EEX beamline at the Argonne Wakefield Accelerator facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA027 Measurement of High Power Terahertz with Dielectric Loaded Waveguide at Tsinghua University 914
 
  • D. Wang, Y.-C. Du, W. Gai, W.-H. Huang, X.L. Su, C.-X. Tang, Q.L. Tian, L.X. Yan
    TUB, Beijing, People's Republic of China
  • S.P. Antipov
    Euclid Beamlabs LLC, Bolingbrook, USA
  • Y.F. Liang
    Tsinghua University, Beijing, People's Republic of China
 
  Funding: Work supported by the National Nature Science Foundation of China (NSFC Grants No.11475097) and the National Key Scientific Instrument and Equipment Development Project of China (Grants No. 2013YQ12034504)
We have measured an intense THz radiation produced by a sub-picosecond, relativistic electron bunch passing through a dielectric loaded waveguide (DLW) at Tsinghua University accelerator beamline. The DLW was 3 cm long quartz tube with 900 'm inner diameter and 100 'm wall thickness metallized on the outside. Radiated energy of the THz pulse was measured to be proportional to the square of the effective charge. The end of the DLW was cut at an angle for efficient THz pulse extraction. Tens of 'J THz energy per pulse were measured outside the vacuum chamber with a calibrated Golay cell in the experiment.
*wangdan16@mail.tsinghua.edu.cn
*yanlx@mail.tsinghua.edu.cn
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB070 S-Band Accelerating Structure for High-Gradient Upgrade of TTX 1485
 
  • D.Z. Cao, H.B. Chen, Y.-C. Du, W. Gai, W.-H. Huang, X.C. Meng, J. Shi, C.-X. Tang, X.W. Wu, H. Zha
    TUB, Beijing, People's Republic of China
 
  Thomson scattering x-ray source is an indispensable scientific X-ray imaging tool in various research fields. The 3-meter S-band linac in Tsinghua Thomson scatter-ing X-ray source (TTX) has been running at an accelerat-ing gradient of 15 MV/m so far. The gradient will be upgraded to 30MV/m by replacing the old structure with a shorter linac. Detailed optimization of the RF design of the new S-band linac structure is presented in this paper. Finally, further research on energy upgrade with X-band structures are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB076 Design of an X-Band Photocathode for Tsinghua Thomson Scattering X-Ray Source 1497
 
  • L.Y. Zhou, H.B. Chen, Y.-C. Du, W. Gai, W.-H. Huang, J. Shi, C.-X. Tang, D. Wang, Z. Zhang, Z. Zhou
    TUB, Beijing, People's Republic of China
 
  Compared with S-band and C-band accelerating structures, X-band structures can run at a higher accelerating gradient and are more compact in size. In order to obtain higher electron energy in a limited space, a new X-band photo-injector operating at 11.424GHz has been designed at the Accelerator Laboratory of Tsinghua University. The structural design of the X-band photo-cathode RF gun and the accelerating structures as well as the beam dynamics simulation are presented in this paper, followed by the optimization of the structure based on the dispersed optimization experiment method(DOE). The results show that the design satisfies the working requirements with a small space occupied and a high beam quality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK026 Simulations of Positron Capture and Acceleration in the Linear Wakefield of Plasma 1737
 
  • M.M. Peng, W. Gai
    TUB, Beijing, People's Republic of China
 
  We present the study of positrons capturing dynamics in the wakefield of plasma generated either by a laser or electron beam. Only simplified linear wakefield models were used as first order approximation. By analysing the phase space and beam dynamics, we show that phase space for capturing is rather small, only high brightness beam with very short pulse length can be captured with reasonable rate for wakefields of 1 - 10 GeV/m and wave-length of 100 micron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA067 Preliminary Results on the Resonant Excitation of THz Wakefield in a Multi-Mode Dielectric Loaded Waveguide by Bunch Train 3426
 
  • D. Wang, Y.-C. Du, W. Gai, W.-H. Huang, L. Niu, X.L. Su, C.-X. Tang, Q.L. Tian, L.X. Yan
    TUB, Beijing, People's Republic of China
  • S.P. Antipov
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • Y.F. Liang
    Tsinghua University, Beijing, People's Republic of China
 
  Funding: Work supported by the National Nature Science Foundation of China (NSFC Grants No.11475097) and the National Key Scientific Instrument and Equipment Development Project of China (Grants No. 2013YQ12034504)
We report the preliminary experimental results on the resonant excitation of THz wakefield in a multi-mode dielectric loaded waveguide (DLW) by electron bunch train at the Tsinghua University accelerator beamline. The bunch train with certain longitudinal periodicity was generated based on nonlinear longitudinal space charge oscillation [1]. By passing such bunch train through a multi-mode DLW, we observed selective excitation of the fifth longitudinal mode (TM05 mode) was resonantly excited. Future experiment plan is to tune the bunch train interval with a chicane in the beamline in order to selectively excite arbitrary mode for tunable THz radiation source with multi-mode DLWs.
*wangdan16@mail.tsinghua.edu.cn
*yanlx@mail.tsinghua.edu.cn
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB031 Study of Beam Break Up in Irradiation Linacs 3767
SUSPSIK056   use link to see paper's listing under its alternate paper code  
 
  • X.C. Meng, H.B. Chen, W. Gai, J. Shi, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • G.H. Li, J.S. Liu, Y.H. Liu
    NUCTECH, Beijing, People's Republic of China
  • F.H. de Sá
    LNLS, Campinas, Brazil
 
  Many recent experiments of the irradiation linacs produced at Tsinghua University indicate that beam power is limited by beam break up (BBU). Limits exist while the beam current or the pulse width is increased. In this paper, we illustrate the bream break up (BBU) phenomenon in the cases of both the 10MeV travelling-wave linac and 10MeV backward travelling-wave linac. The higher order modes in the linacs are analysed and the wake fields are calculated both with theoretical analysis and numerical simulation. Also, the beam dynamics is studied on the basis of the wakefield results to find a BBU threshold in these structures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK054 The X-Band Pulse Compressor for Tsinghua Thomson Scattering X-Ray Source 4214
 
  • Y.L. Jiang, H.B. Chen, C. Cheng, W. Gai, J. Shi, P. Wang, X.W. Wu, H. Zha
    TUB, Beijing, People's Republic of China
 
  An X-band (11.424 GHz) high-power RF station is being built for Tsinghua Thomson scattering X-ray Source (TTX). The station aims to feed several X-band accelerating structures working at a high gradient of 80 MV/m. An X-band pulse compressor is designed to compress the RF pulse from 1.5 us to 100 ns and to generate more than 250 MW peak power from a 50MW klystron. This pulse compressor implements a resonate cavity housing the HE11-mode as the energy storage cavity, with a high quality factor Q of more than 105. The detailed design of the high-Q cavity as well as the dedicate couplers of this pulse compressor are present in this work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)