THOAA —  Contributed Oral Presentations, Beam Instrumentation and Feedback   (12-May-16   09:30—10:30)
Chair: Y.B. Leng, SINAP, Shanghai, People's Republic of China
Paper Title Page
THOAA01 Identification of Intra-bunch Transverse Dynamics for Model-Based Control Purposes at CERN Super Proton Synchrotron 3145
SUPSS077   use link to see paper's listing under its alternate paper code  
 
  • O. Turgut, J.E. Dusatko, J.D. Fox, C.H. Rivetta
    SLAC, Menlo Park, California, USA
  • S.M. Rock
    Stanford University, Stanford, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515 and the US LHC Accelerator Research program (LARP). Research supported by FP7 HiLumi LHC http://hilumilhc.web.cern.ch
The high luminosity upgrade plan for the LHC (HiLumi-LHC) increases the bunch intensity and the ultimate intensities require mitigation of possible intra-bunch instabilities in the SPS. Feedback systems can stabilize intra-bunch dynamics. Model based control has promise to stabilize intra-bunch dynamics but it requires a reduced order model which captures the most significant intra-bunch dynamics. We present methods for the estimation of a multi-input multi-output (MIMO) reduced order model of intra-bunch dynamics based on data generated by nonlinear macro particle simulations (CMAD, HeadTail). These linear models are used to design optimal model-based controllers. We evaluate the effectiveness of the MIMO model-based controllers for future high intensity beam conditions within the nonlinear macro particle simulations. We highlight the use of these techniques to stabilize intra-bunch motion and as an important beam dynamics measurement technique.
 
slides icon Slides THOAA01 [10.146 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAA02 The Development of C-Band Cavity Beam Position Monitor with a Position Resolution of Nano Meter 3149
 
  • S.W. Jang, E.-S. Kim
    Korea University Sejong Campus, Sejong, Republic of Korea
  • P. Bambade, O.R. Blanco-García, S. Wallon
    LAL, Orsay, France
  • N. Blaskovic Kraljevic, T. Bromwich, P. Burrows
    JAI, Oxford, United Kingdom
  • T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
 
  We developed and tested an C-band beam position monitor with position resolution of nano meter in ATF2. The C-band BPM was developed for the fast beam feedback system at the interaction point of ATF in KEK, which C-band beam position monitor called to IPBPM (Interaction Point Beam Position Monitor). The developed IPBPM was measured 26nm with 30% of nominal beam charge of ATF. From the measured beam position resolution, we can expected to 8nm beam position resolution with nominal ATF beam charge condition. In this talk, we will described about the development of IPBPM and the beam test results of nano meter level beam position resolution.  
slides icon Slides THOAA02 [4.806 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOAA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAA03 MicroTCA.4 based Single Cavity Regulation including Piezo Controls 3152
 
  • K.P. Przygoda, H. Schlarb, Ch. Schmidt
    DESY, Hamburg, Germany
  • P. Echevarria
    HZB, Berlin, Germany
  • R. Rybaniec
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  We want to summarize the single cavity regulation with MTCA.4 electronics. Presented solution is based on the one MTCA.4 crate integrating both RF field control and piezo tuner control systems. The RF field control electronics consists of RTM for cavity probes sensing and high voltage power source driving, AMC for fast data processing and digital feedback operation. The piezo control system has been setup with high voltage RTM Piezo driver and low cost AMC based FMC carrier. The communication between both control systems is performed using low latency link over the AMC backplane with data throughput up to the 3.125 Gbps. First results from CW operation of the RF field controller and the cavity active resonance control with the piezo tuners are demonstrated and briefly discussed.  
slides icon Slides THOAA03 [2.693 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOAA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)