Author: Wenninger, J.
Paper Title Page
MOPOR008 Beam Induced RF Heating in LHC in 2015 602
 
  • B. Salvant, O. Aberle, M. Albert, R. Alemany-Fernandez, G. Arduini, J. Baechler, M.J. Barnes, P. Baudrenghien, O.E. Berrig, N. Biancacci, G. Bregliozzi, J.V. Campelo, F. Carra, F. Caspers, P. Chiggiato, A. Danisi, H.A. Day, M. Deile, D. Druzhkin, J.F. Esteban Müller, S. Jakobsen, J. Kuczerowski, A. Lechner, R. Losito, A. Masi, N. Minafra, E. Métral, A.A. Nosych, A. Perillo Marcone, D. Perini, S. Redaelli, F. Roncarolo, G. Rumolo, E.N. Shaposhnikova, J.A. Uythoven, C. Vollinger, A.J. Välimaa, N. Wang, M. Wendt, J. Wenninger, C. Zannini
    CERN, Geneva, Switzerland
  • M. Bozzo
    INFN Genova, Genova, Italy
  • J.F. Esteban Müller
    EPFL, Lausanne, Switzerland
  • N. Wang
    IHEP, Beijing, People's Republic of China
 
  Following the recurrent beam induced RF issues that perturbed LHC operation during LHC Run 1, a series of actions were put in place to minimize the risk that similar issues would occur in LHC Run 2: longitudinal impedance reduction campaign and/or improvement of cooling for equipment that were problematic or at the limit during Run 1, stringent constraints enforced on new equipment that would be installed in the machine, tests to control the bunch length and longitudinal distribution, additional monitoring of temperature, new monitoring tools and warning chains. This contribution reports the outcome of these actions, both successes as well as shortcomings, and details the lessons learnt for the future runs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW012 Beam Offset Stabilization Techniques for the LHC Collision Points 1438
 
  • A.A. Gorzawski, R. Jacobsson, J. Wenninger
    CERN, Geneva, Switzerland
 
  Maintaining head-on collisions over many hours is an important aspect of optimizing the performance of a collider. For current LHC operation where the beam optics is fixed during periods of colliding beam, mainly ground motion induced perturbations have to be compensated. The situation will become significantly more complex when luminosity leveling will be applied following the LHC luminosity upgrades. During β* leveling the optics in the interaction region changes significantly, feed-downs from quadrupole misalignment may induce significant orbit changes that may lead to beam offsets at the collision points. Such beam offsets induce a loss of luminosity and reduce the stability margins for collective effects that is provided by head-on beam-beam. It is therefore essential that the beam offsets at the collision points are minimized during the leveling process. This paper will review sources and mitigation techniques for the orbit perturbation at the collision points during β* leveling, and present results of experiments performed at the LHC to mitigate and compensate such offsets.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW013 Experimental Demonstration of β* Leveling at the LHC 1442
SUPSS001   use link to see paper's listing under its alternate paper code  
 
  • A.A. Gorzawski, D. Mirarchi, B. Salvachua, J. Wenninger
    CERN, Geneva, Switzerland
 
  The HL-LHC project foresees to boost the LHC peak luminosity beyond the capabilities of the LHC experimental detectors. Leveling the luminosity down to a constant value that is sustainable for the experiments is therefore the operational baseline of HL-LHC. Various luminosity leveling techniques are available at the LHC. Leveling by adjusting β*, the betatron function at the interaction point, to maintain a constant luminosity is favorable because the beams remain head-on which provides optimal stability from the point of view of collective effects. Smooth leveling by β* requires however excellent control of the beam orbits and beam losses in the interaction regions since the beam offsets should not vary by more than around one r.m.s. beam size during the process. This leveling scheme has been successfully tested and experimentally demonstrated during the LHC machine development program in 2015. This paper presents results on luminosity leveling over a β* range from 10 m to 0.8 m and provides an outlook on future developments and use of this technique at the LHC.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW026 Feed-Forward Corrections for Tune and Chromaticity Injection Decay During 2015 LHC Operation 1489
 
  • M. Solfaroli Camillocci, M. Juchno, M. Lamont, M. Schaumann, E. Todesco, J. Wenninger
    CERN, Geneva, Switzerland
 
  After two years of shutdown, the Large Hadron Collider (LHC) has been operated in 2015 at 6.5 TeV, close to its designed energy. When the current is stable at low field, the harmonic components of the main circuits are subject to a dynamic variation induced by current redistribution on the superconducting cables. The Field Description of the LHC (FiDel) foresaw an increase of the decay at injection of tune (quadrupolar components) and chromaticity (sextupolar components) of about 50% with respect to LHC Run1 due to the higher operational current. This paper discusses the beam-based measurements of the decay during the injection plateau and the implementation and accuracy of the feed-forward corrections as present in 2015. Moreover, the observed tune shift proportional to the circulating beam intensity and it's foreseen feed-forward correction are covered.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW027 The 2015 Heavy-Ion Run of the LHC 1493
 
  • J.M. Jowett, R. Alemany-Fernandez, R. Bruce, M. Giovannozzi, P.D. Hermes, W. Höfle, M. Lamont, T. Mertens, S. Redaelli, M. Schaumann, J.A. Uythoven, J. Wenninger
    CERN, Geneva, Switzerland
 
  In late 2015 the LHC collided lead nuclei at a beam energy of 6.37 Z TeV, chosen to match the 5.02 TeV per colliding nucleon pair of the p-Pb collision run in 2013. In so doing, it surpassed its design luminosity by a factor of 2. Besides the higher energy, the operational configuration had a number of new features with respect to the previous Pb-Pb run at 3.5 Z TeV in 2011; unusual bunch patterns providing collisions in the LHCb experiment for the first time, luminosity levelling and sharing requirements, a vertical displacement of the interaction point in the ALICE experiment, and operation closer to magnet quench limits with mitigation measures. We present a summary of the commissioning and operation and what has been learned in view of future heavy-ion operation at higher luminosity.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW029 Tune and Chromaticity Control During Snapback and Ramp in 2015 LHC Operation 1501
 
  • M. Schaumann, M. Juchno, M. Lamont, M. Solfaroli Camillocci, E. Todesco, J. Wenninger
    CERN, Geneva, Switzerland
 
  Because of current redistribution on the superconducting cables, the harmonic components of the magnetic fields of the superconducting magnets in the Large Hadron Collider (LHC) show decay during the low field injection plateau. This results in tune and chromaticity variations for the beams. In the first few seconds of the ramp the original hysteresis state of the magnetic field is restored - the field snaps back. These fast dynamic field changes lead to strong tune and chromaticity excursions that, if not properly controlled, induce beam losses and potentially trigger a beam dump. A feed-forward system applies predicted corrections during the injection plateau and to the first part of the ramp to avoid violent changes of beam conditions. This paper discusses the snapback of tune and chromaticity as observed in 2015, as well as the control of beam parameters during the ramp. It also evaluates the quality of the applied feed-forward corrections and their reproducibility.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW031 Combined Ramp and Squeeze to 6.5 TeV in the LHC 1509
 
  • M. Solfaroli Camillocci, S. Redaelli, R. Tomás, J. Wenninger
    CERN, Geneva, Switzerland
 
  The cycle of the LHC is composed of an energy ramp followed by a betatron squeeze, needed to reduce the beta- star value in the interaction points. Since Run 1, studies have been carried out to investigate the feasibility of combining the two operations, thus considerably reducing the duration of the operational cycle. In Run 2, the LHC is operating at the energy of 6.5 TeV that requires a much longer cycle than that of Run 1. Therefore, the performance gains from a Combined Ramp and Squeeze (CRS) is more interesting. Merging the energy ramp and the betatron squeeze could result in a gain of several minutes for each LHC cycle. With increasing maturity of LHC operation, it is now possible to envisage more complex beam manipulations; this paper describes the first machine experiment with beam, aiming at validating the combination of ramp and squeeze, which was performed in 2015, during a machine development phase. The operation experience with the LHC run at 2.51 TeV, when CRS down to 4 meters was deployed and a the first results of 2016 run are also reviewed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOCA01 Operation of the LHC with Protons at High Luminosity and High Energy 2066
 
  • G. Papotti, M. Albert, R. Alemany-Fernandez, G.E. Crockford, K. Fuchsberger, R. Giachino, M. Giovannozzi, G.H. Hemelsoet, W. Höfle, D. Jacquet, M. Lamont, D. Nisbet, L. Normann, M. Pojer, L. Ponce, S. Redaelli, B. Salvachua, M. Solfaroli Camillocci, R. Suykerbuyk, J.A. Uythoven, J. Wenninger
    CERN, Geneva, Switzerland
 
  In 2015 the Large Hadron Collider (LHC) entered the first year in its second long Run, after a 2-year shutdown that prepared it for high energy. The first two months of beam operation were dedicated to setting up the nominal cycle for proton-proton operation at 6.5 TeV/beam, and culminated with the first physics with 3 nominal bunches/ring at 13 TeV CoM on 3 June. The year continued with a stepwise intensity ramp up that allowed reaching 2244 bunches/ring for a peak luminosity of ~5·1033 cm-2s−1 and a total of just above 4 fb-1 delivered to the high luminosity experiments. Beam operation was shaped by the high intensity effects, e.g. electron cloud and macroparticle-induced fast losses (UFOs), which on a few occasions caused the first beam induced quenches at high energy. This paper describes the operational experience with high intensity and high energy at the LHC, together with the issues that had to be tackled along the way.  
slides icon Slides WEOCA01 [4.013 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEOCA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW034 First Operational Experience with Embedded Collimator BPMs in the LHC 2510
 
  • G. Valentino, G. Baud, R. Bruce, M. Gąsior, J. Olexa, S. Redaelli, A. Valloni, J. Wenninger
    CERN, Geneva, Switzerland
 
  During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also mean that margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts can be reduced, therefore increasing the beta-star and luminosity reach of the LHC. In this paper, the first operational results are presented, including a comparison with the standard alignment technique and a fill-to-fill analysis of the measured orbit in different machine modes in the first year of running after the shutdown.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR022 Design of Beam Optics for the FCC-ee Collider Ring 3821
 
  • K. Oide, K. Ohmi, D. Zhou
    KEK, Ibaraki, Japan
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • S. Aumon, M. Benedikt, H. Burkhardt, A. Doblhammer, B. Härer, B.J. Holzer, J.M. Jowett, M. Koratzinos, L.E. Medina Medrano, Y. Papaphilippou, J. Wenninger, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.P. Blondel
    DPNC, Genève, Switzerland
  • A.V. Bogomyagkov, I. Koop, E.B. Levichev, P.A. Piminov, D.N. Shatilov, D.B. Shwartz, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • Y. Cai, M.K. Sullivan, U. Wienands
    SLAC, Menlo Park, California, USA
 
  A design of beam optics will be presented for the FCC-ee double-ring collider. The main characteristics are 45 to 175 GeV beam energy, 100 km circumference with two IPs/ring, 30 mrad crossing angle at the IP, crab-waist scheme with local chromaticity correction system, and "tapering" of the magnets along with the local beam energy. An asymmetric layout near the interaction region suppresses the critical energy of synchrotron radiation toward the detector at the IP less than 100 keV, while keeping the geometry as close as to the FCC-hh beam line. A sufficient transverse/longitudinal dynamic aperture is obtained to assure the lifetime with beamstrahlung and top-up injection. The synchrotron radiation in all magnets, the IP solenoid and its compensation, nonlinearity of the final quadrupoles are taken into account.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR024 Electrical Power Budget for FCC-ee 3828
 
  • F. Zimmermann, S. Aull, M. Benedikt, D. Bozzini, O. Brunner, J.-P. Burnet, A.C. Butterworth, R. Calaga, E. Jensen, V. Mertens, A. Milanese, M. Nonis, N. Schwerg, L.J. Tavian, J. Wenninger
    CERN, Geneva, Switzerland
  • A.P. Blondel, M. Koratzinos
    DPNC, Genève, Switzerland
  • Sh. Gorgi Zadeh
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • K. Oide
    KEK, Ibaraki, Japan
  • L. Rinolfi
    JUAS, Archamps, France
 
  Funding: Supported by the European Commission under the Capacities 7th Framework Programme project EuCARD-2, grant agreement 312453.
We present a first rough estimate for the electrical power consumption of the FCC-ee lepton collider. This electrical power is dominated by the RF system, which provides the motivation for the ongoing R&D on highly efficient RF power sources. Other contributions come from the warm arc magnets, the cryogenics systems, cooling, ventilation, general services, the particle-physics detectors, and the injector complex.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY045 Commissioning of the Machine Protection Systems of the Large Hadron Collider Following its First Long Shutdown 4203
 
  • D. Wollmann, R. Schmidt, J.A. Uythoven, J. Wenninger, M. Zerlauth
    CERN, Geneva, Switzerland
 
  During the first long shutdown of the Large Hadron Collider (LHC) extending for more than 18 months, most Machine Protection Systems (MPS) have undergone significant changes, and upgrades. A full re-commissioning of the MPS was performed at the end of the shutdown and during the LHC beam commissioning in 2015. To verify the correct functioning of all protection-relevant systems with beam, a step-wise intensity ramp-up was performed, reaching at the end of 2015 a record stored beam energy of ~280 MJ per beam, nearly 80% of the value in the design report. This contribution summarizes the results of the MPS commissioning, the intensity ramp-up and the continuous follow-up during operation, focusing mainly on near misses and false triggers and their proposed mitigations. A strategy to minimize risks during machine development periods for future operation of the LHC, when the protection parameters are modified for several tests, is discussed. The machine protection strategy for the LHC run in 2016 is presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)