Author: Kaufman, J.J.
Paper Title Page
WEPMR016 Vertical Electropolishing Studies at Cornell with KEK and Marui 2295
 
  • F. Furuta, G.M. Ge, T. Gruber, J.J. Kaufman, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, T. Saeki
    KEK, Ibaraki, Japan
 
  Cornell's SRF group has developed Vertical Electro-Polishing (VEP) and applied on 1.3GHz Niobium SRF cavities as the primary surface treatment. High-Q and high voltage performances of VEP'ed SRF cavities had been successfully demonstrated at Cornell. In 2014, new VEP R&D collaboration has started between Cornell, KEK, and Marui Galvanizing Co. Ltd. (MGI). MGI and KEK has developed their original VEP cathode named 'i-cathode Ninja'® which has four retractable wing-shape parts per cell for single-/9-cell cavities. We will report the results of VEP process using 'i-cathode Ninja'® on single cell cavity at Cornell.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR020 First Cool-down of the Cornell ERL Main Linac Cryo-Module 2305
 
  • R.G. Eichhorn, J.V. Conway, F. Furuta, G.M. Ge, D. Gonnella, T. Gruber, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell University has finished building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode with a design field of 16 MV/m and a Quality factor of 2x1010. We wil shortly review the design and focus on reporting on the first cool-down of this module. We will giving data for various cool-down scenarios (fast/ slow), uniformity and performance  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR023 Surface Analysis Studies of Nb3Sn Thin Films 2316
 
  • D.L. Hall, J.J. Kaufman, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  A recent study to optimise the coating of thin-film Nb3Sn cavities has resulted in coating procedures that can fabricate 1.3 GHz cavities capable of reproducibly achieving fields of >16 MV/m with record high Qs >1010 at 4.2 K. However, the performance of these next generation SRF cavities is as yet well below the theoretical maximum performance expected of Nb3Sn, thus giving ample room for further advancements. Current measurements strongly suggest that the current limits are due to local defects and irregularities in the coated surface. In this paper we analyse, using methods including SEM/EDS, TEM, XRD and EBSD, the surface of both sample coupons and cavity cut-outs, with a view to identifying and understanding the origin of surface non-uniformities that would lead to increased surface resistance and cavity quench.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR025 Improved N-Doping Protocols for SRF Cavities 2323
 
  • D. Gonnella, R.G. Eichhorn, F. Furuta, G.M. Ge, T. Gruber, G.H. Hoffstaetter, J.J. Kaufman, P.N. Koufalis, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF, DOE
Nitrogen-doping has been shown to consistently produce better quality factors in SRF cavities than is achievable with standard preparation techniques. Unfortunately, nitrogen-doping typically brings with it lower quench fields and higher sensitivities of residual resistance to trapped magnetic flux. Here we present work to understand these effects in hopes of mitigating them while maintaining the high Q desired by future projects. Using a nitrogen diffusion simulation, material parameters of nitrogen-doped cavities can be predicted prior to doping. These simulations results are consistent with SIMS data taken from samples treated with cavities. The nature of doping's effect on quench field has also been studied using CW and pulsed measurements. These results have allowed us to better understand the nature of nitrogen-doping and its effect on cavity performance.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR026 RF Losses from Trapped Flux in SRF Cavities 2327
 
  • D. Gonnella, J.J. Kaufman, P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF
Previous measurements at Cornell have shown that the sensitivity of residual resistance to trapped magnetic field in SRF cavities is heavily dependent on the mean free path of the RF penetration layer of the niobium. Here we report on a systematic study of ten cavity preparations with different mean free paths and the effect of these preparations on sensitivity to trapped magnetic flux. In the clean limit, longer mean free path leads to a lower sensitivity to trapped magnetic flux while in the dirty limit the opposite is true, shorter mean free path leads to lower sensitivity. These results are also shown to be in good agreement with theoretical predictions of RF losses due to oscillations of vortex lines.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR027 Dependence of Surface Resistance on N-Doping Level 2331
 
  • D. Gonnella, F. Furuta, G.M. Ge, J.J. Kaufman, P.N. Koufalis, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF, DOE
Nitrogen-doping has become a standard tool for reaching high quality factors in SRF cavities in the medium field region at 2 K. This high Q has been shown to be a result of lowering of the temperature dependent BCS resistance. Here we show that this lowering of the BCS resistance is due to interstitial nitrogen in the niobium lowering the mean free path. The BCS resistance extracted from experimental data is shown to be consistent with theoretical predictions from BCS theory; that there is an optimal doping of which the mean free path is lowered to about half the intrinsic coherence length. These results provide insight into understanding the mechanisms behind nitrogen-doping and allow us to more accurately predict doping parameters to reach optimal cavity performance.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBB02 Impurity Doping of Superconducting Radio Frequency Cavities 3195
SUPSS093   use link to see paper's listing under its alternate paper code  
 
  • P.N. Koufalis, F. Furuta, G.M. Ge, D. Gonnella, J.J. Kaufman, M. Liepe, J.T. Maniscalco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF PHYS-1416318
Impurity doping of bulk-niobium superconducting radio frequency (SRF) cavities is a relatively new field of study and the underlying physics is not yet fully understood. Previous studies have shown an increase in the intrinsic quality factor and the corresponding decrease of the temperature-dependent component of the surface resistance of nitrogen-doped cavities with increasing accelerating field.* Here we investigate the effects of alternative inert dopants on the surface resistance and thus the intrinsic quality factor of SRF cavities in pursuit of the optimal dopant and doping level.
A. Grassellino et al., Nitrogen and Argon Doping of Niobium for Superconducting Radio Frequency Cavities. Supercond. Sci. Technol., 26(102001), 2013
 
slides icon Slides THOBB02 [4.048 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THOBB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)