



# Impurity Doping of Superconducting Radio Frequency Cavities

Peter N. Koufalis Cornell University May 5<sup>th</sup>, 2016





#### Outline



#### Nitrogen doping

- Why dope?
- Benefits of N-doping
- Nitrogen Doping Process
- Field dependence of surface resistance
- Drawbacks of N-doping

#### Inert Dopants

- Why alternative dopants?
- Argon
- Helium



A. Grassellino et al. *Supercond. Sci. Tech.*, 26(102001), 2013.

$$Q_0 = \omega_0 U/P_c$$





# Why Dope?









#### LCLS-II



- N-doped 9-cell cavities
- Increased efficiency
- Lower operating costs

Cryogenic losses  $\sim 1/Q_0$ 







#### LCLS-II









### Nitrogen Diffusion



#### **TM Vacuum Furnace**





#### Recipe:

- 1. Dope
  - 800 °C / 20 mins / 60 mTorr N<sub>2</sub>
- Anneal Step
  - 800 °C / 30 mins / Vacuum





### Nitrogen Diffusion



- Cavities doped in a vacuum furnace at high temperatures
- NbN forms on the surface of the cavity
- Nitrogen diffuses from the NbN layer into the Nb bulk as an interstitial
- Chemical etching is performed to remove the *lossy* NbN layer





#### What is Nitrogen Doping?









#### Surface Resistance









#### Low Field BCS Resistance









#### Field Dependence





A. Gurevich. Phys. Rev. Lett. 113:087001, Aug. 2014.





#### Quench Fields











#### RF Losses from Trapped Magnetic Flux





Phys. Rev. Lett., 62(114), 1989.









#### Flux Sensitivity









#### Flux Sensitivity





D. Gonnella et al., Journal of Applied Physics, 119(073904) 2016.





#### Solutions



- Ways around this sensitivity:
  - Good magnetic shielding
  - Very fast cooldowns
  - Compensation coils













#### Outline



#### Nitrogen doping

- Why dope?
- Nitrogen Diffusion
- Benefits of N-doping
- Field Dependence of Surface Resistance
- Limitations of N-doping

#### Inert Dopants

- Why alternative dopants?
- Argon
- Helium





## Beyond Nitrogen



- Nitrogen is only dopant that has been studied so far:
  - Nitrogen doping has yielded great results
  - Is Nitrogen the best dopant? Are there better dopants?
  - Inert doping could remove chemical etching from the process







#### Impurity Doping



#### Nitrogen doping so far:







### Argon Doping









## Argon Doping









# Helium Doping









#### First He Dope!









#### Conclusion



#### Nitrogen doping

- Very well established method to increase Q<sub>0</sub>
- Significant progress understanding the science of N-doping
- Drawbacks
  - Trapped flux sensitivity
  - Lower average quench fields

#### Inert Doping

- Argon had no effect
- First results with helium are exciting
- Effects similar to nitrogen
- There is much to be done!





# References & Acknowledgements



# THANK YOU FOR YOUR ATTENTION!

#### **ACKNOWLEDGEMENTS**

H. Conklin, D. Gonnella, T. Gruber, D. L. Hall, J. J. Kaufman, M. Liepe, J. T. Maniscalco



