Author: Ghigo, A.
Paper Title Page
TUPMR038 The Experimental Beam Line at CNAO 1334
 
  • M. G. Pullia, S. Alpegiani, J. Bosser, E. Bressi, L. Casalegno, G. Ciavola, M. Ciocca, M. Donetti, A. Facoetti, L. Falbo, M. Ferrarini, S. Foglio, S.G. Gioia, V. Lante, L. Lanzavecchia, R. Monferrato, A. Parravicini, M. Pezzetta, C. Priano, E. Rojatti, S. Rossi, S. Savazzi, S. Sironi, S. Toncelli, G. Venchi, B. Vischioni, S. Vitulli, C. Viviani
    CNAO Foundation, Milan, Italy
  • G. Battistoni
    Universita' degli Studi di Milano & INFN, Milano, Italy
  • L. Celona, S. Gammino, S. Passarello
    INFN/LNS, Catania, Italy
  • A. Clozza, E. Di Pasquale, A. Ghigo, L. Pellegrino, R. Ricci, U. Rotundo, C. Sanelli, G. Sensolini, M. Serio
    INFN/LNF, Frascati (Roma), Italy
  • M. Del Franco
    Consorzio Laboratorio Nicola Cabibbo, Frascati, Italy
  • S. Giordanengo
    INFN-Torino, Torino, Italy
  • A.G. Lanza
    INFN - Pavia, Pavia, Italy
  • R. Sacchi
    Torino University, Torino, Italy
 
  The CNAO center has been conceived since the beginning with three treatment rooms and an 'experimental room' where research can be carried out without hindering the clinical activity. The room itself was built since the beginning, but the beam line was planned at a second moment in time to give priority to the treatments. The experimental room beam line has now been designed to be 'general purpose', to be used for research in different fields. Possible activities could be, as an example, irradiation of cells, test of beam monitors, development of in-beam monitoring devices or radiation hardness studies. In a second stage a third source will be added to the present two in order to carry on experiments with additional ion species besides the two used presently for treatments, protons and carbon ions. In this paper a description of the design and of the construction status is given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW004 Status of the STAR Project 1747
 
  • A. Bacci, I. Drebot, L. Serafini, V. Torri
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • R.G. Agostino, R. Barberis, M. Ghedini, F. Martire, C. Pace
    UNICAL, Arcavacata di Rende, Italy
  • D. Alesini, M. Bellaveglia, J.J. Beltrano, F.G. Bisesto, G. Borgese, B. Buonomo, G. Di Pirro, G. Di Raddo, A. Esposito, A. Gallo, A. Ghigo, F. Iungo, L. Pellegrino, A. Stella, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • G. D'Auria, A. Fabris, M. Marazzi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • V. Petrillo
    Universita' degli Studi di Milano, Milano, Italy
  • E. Puppin
    Politecnico/Milano, Milano, Italy
  • M. Rossetti Conti
    Universita' degli Studi di Milano & INFN, Milano, Italy
 
  This paper reports on the final design and the work in progress on the STAR project (IPAC2014:WEPRO115), which is under construction at the Univ. of Calabria (Italy). The project is devoted to the construction of an advanced Thomson source of monochromatic tunable, ps-long, polarized X-ray beams, ranging from 40 up to 140 KeV . At present the buildings and main plants have been completed as the acquisition of main components: the RF photo-injector, the accelerating section, laser systems for collision and photo-cathode, RF Power Source and magnets are ready to start installation and site acceptance tests. The design of laser lines is complete and simulated by ZEMAX, aiming to minimize energy losses, optical distortions and providing a tunable experimental setup as well. The RF power network is close to be tested, it's based on a 55MW (2.5us pulse) S-band Klystron driven by a 500kV Pulse Forming Network based modulator and a Low Level RF system, running at 100 Hz. The Control System is been designed using EPICS and allows to manage easily and fastly each machine parameter. We expect to start commissioning the machine by the end of 2016 and obtain the first collisions within the first part of 2017.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW041 Optimization Studies for the Beam Dynamic in the RF Linac of the ELI-NP Gamma Beam System 1850
 
  • C. Vaccarezza, D. Alesini, M. Bellaveglia, M.E. Biagini, G. Di Pirro, A. Gallo, A. Ghigo, S. Guiducci, A. Vannozzi, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • A. Bacci, I. Drebot, D.T. Palmer, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • G. Campogiani
    Rome University La Sapienza, Roma, Italy
  • A. Giribono, A. Mostacci, L. Palumbo
    University of Rome La Sapienza, Rome, Italy
  • V. Petrillo
    Universita' degli Studi di Milano & INFN, Milano, Italy
  • L. Sabbatini
    Consorzio Laboratorio Nicola Cabibbo, Frascati, Italy
 
  The ELI-NP GBS is an high spectral density and monochromatic gamma ray source based upon the inverse Compton scattering effect now under construction in Magurele.  Its relevant specifications are brilliance higher than 1021, 0.5% monochromaticity and a 0.2-19.5 MeV energy tunability. Strong requirements are set for the electron beam dynamic: the control of both the transverse normalized emittance and the energy spread to optimize the spectral density and guarantee the mono chromaticity of the emitted radiation. On this basis the RF Linac optimization has been performed for the designed energy range; a sensitivity analysis of the machine to possible jitters, errors and so on has been also performed, the simulations results hare here presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR006 Demonstration of CLIC Level Phase Stability using a High Bandwidth, Low Latency Drive Beam Phase Feedforward System at the CLIC Test Facility CTF3 2673
 
  • J. Roberts, P. Burrows, G.B. Christian, C. Perry
    JAI, Oxford, United Kingdom
  • A. Andersson, R. Corsini, P.K. Skowroński
    CERN, Geneva, Switzerland
  • A. Ghigo, F. Marcellini
    INFN/LNF, Frascati (Roma), Italy
 
  Funding: Work supported by the European Commission under the FP7 Research Infrastructures project Eu-CARD, grant agreement no.~227579.
The CLIC acceleration scheme, in which the RF power used to accelerate the main high energy beam is extracted from a second high intensity but low energy beam, places strict requirements on the phase stability of the power producing drive beam. To limit luminosity loss caused by energy jitter leading to emittance growth in the final focus to below 1%, 0.2 degrees of 12 GHz, or 50 fs, drive beam phase stability is needed. A low-latency phase feedforward correction with bandwidth above 17.5 MHz will be used to reduce the drive beam phase jitter to this level. The proposed scheme corrects the phase using fast electromagnetic kickers to vary the path length in a chicane prior to the drive beam power extraction. A prototype of this system has been installed at the CLIC test facility CTF3 to prove its feasibility. The latest results from the system are presented, demonstrating phase stabilisation in agreement with simulations given the beam conditions and power of the kicker amplifiers. Necessary improvements in the phase monitor performance and optics corrections made to remove the phase-energy dependence via R56 in order to achieve this level of stability are also discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)