03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques
A13 New Acceleration Techniques
Paper Title Page
WEXB01 Advanced Acceleration Schemes 1945
 
  • P.A. Naik, P.D. Gupta, B.S. Rao
    RRCAT, Indore (M.P.), India
 
  Review the progress and prospects of advanced acceleration concepts, including plasma acceleration, laser acceleration, and dielectric accelerators. Report ongoing and near-future experiments, and longer-term prospects for applications (e.g. compact X-ray sources, linear colliders, hadrontherapy).  
slides icon Slides WEXB01 [8.636 MB]  
 
WEPZ002 Chromatic, Geometric and Space Charge Effects on Laser Accelerated Protons Focused by a Solenoid 2766
 
  • H.Y. Al-Omari, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • I. Hofmann
    GSI, Darmstadt, Germany
 
  We studied numerically emittance and transmission effects by chromatic and geometric aberrations, with and without space charge, for a proton beam behind a solenoid in the laser proton experiment LIGHT at GSI. The TraceWin code was employed using a field map for the solenoid and an initial distribution with exponential energy dependence close to the experiment. The results show a strong effect of chromatic, and a relatively weak one of geometric aberrations as well as dependence of proton transmission on distance from the solenoid. The chromatic effect has an energy filtering property due to the finite radius beam pipe. Furthermore, a relatively modest dependence of transmission on space charge is found for p production intensity below 1011.  
 
WEPZ004 Solid Pulse Transforming Line for DWA 2769
 
  • L. Zhang
    CAEP/IFP, Mainyang, Sichuan, People's Republic of China
 
  This paper introduces the research work about solid pulse transforming line for dielectric wall accelerator(DWA). We will discuss the impedence of the solid pulse transforming line due to different material. Some research of PCSS(photoconductive semiconductor switch),which was used for DWA, will also be described.  
 
WEPZ005 Field Calculations to obtain Attosecond/Femtosecond Electron Bunches 2772
 
  • V.A. Papadichev
    LPI, Moscow, Russia
 
  Obtaining short electron bunches of attosecond and femtosecond duration in a combined quasi-static and laser electric field [* - ****] requires careful field formation in the cathode region. First, the maximum of laser electric field normal to the cathode plate, depending on the incidence angle, was found employing Fresnel formulae using complex dielectric permittivity of metals. Second, laser field enhancement on cathode spikes was calculated for the case of an ellipsoid in a qusi-static approximation (laser wavelength larger than spike dimensions). Field enhancement is approximately proportional to the square of the ratio of major to minor axes of ellipsoid. Thus, enhancement factors as large as 100 - 1000 are obtainable, allowing to reduce laser power by 10 thousand to 1 million times.
* V.A.Papadichev, Patent RU 2 269 877 C1, 10.02.06, Bull. 4.
** V.A.Papadichev, Proc. EPAC08, p.2812.
*** V.A.Papadichev, Proc. EPAC08, p.2815.
**** V.A.Papadichev, Proc. IPAC'10, p. 4372
 
 
WEPZ006 Forming Attosecond Electron Pulses in Space-charge Dominated Regime 2775
 
  • V.A. Papadichev
    LPI, Moscow, Russia
 
  Production of high-current attosecond electron pulses requires studying of the final bunching stage, which inevitably is space-charge dominated [*, **, ***]. Two models are studied, both allow solving a one-dimensional equation of motion. The first is for a spherical bunch, which corresponds to a short emitted pulse from a one-spike cathode of diameter approximately equal to its length. The second model is suited for pulses emitted from a multi-spike or multi-blade cathode. The bunch in the latter case is a thin plate and its evolution can be studied by also solving one-dimensional equation of motion. It was shown that bunches of 10-attosecond (as) duration with peak current of dozens of amperes can be obtained when using a carbon dioxide laser and less than 0.1-as duration with currents up to 1 MA when employing a neodymium laser. Beam focusing in transverse directions is also studied using a model. Possible applications of such electron bunches are reviewed, including obtaining attosecond pulses of tunable coherent radiation in UV and X-ray regions.
* V.A.Papadichev, Proceedings of EPAC08, p.2815.
** V.A.Papadichev, Proceedings of IPAC'10, Kyoto, Japan, p. 4372.
*** V.A.Papadichev, Proc. RUPAC-2010, TUPSAO10, p. 56.
 
 
WEPZ007 Multi-mode, Two-beam Accelerator with Feedback 2778
 
  • S.V. Kuzikov, M.E. Plotkin
    IAP/RAS, Nizhny Novgorod, Russia
 
  A high-gradient accelerator consisted of the test and the drive beam structures is reported. The accelerating structure can be based on dielectric or corrugated cavities separated each other by irises. Each cavity is operated by several axisymmetric, TM-like eigen-modes with longitudinal indices to be related to frequencies. These modes are excited at Fourier harmonics of the drive current which consists of bunches spaced with the same period as test bunches. The superposition of the excited modes introduces a short RF pulse propagated in-phase with a moving test bunch and after reflection by iris (a feedback) this pulse can accelerate next bunch. Such longitudinally-sweeping RF field promises a reduction of the exposure time and due to compact space shape can help to obtain high shunt impedance.  
 
WEPZ008 Experimental Plans to Explore Dielectric Wakefield Acceleration in the THz Regime 2781
 
  • F. Lemery, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • C. Behrens, E. Elsen, K. Flöttmann, C. Gerth, G. Kube, B. Schmidt
    DESY, Hamburg, Germany
  • J. Osterhoff
    LBNL, Berkeley, California, USA
  • P. Stoltz
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work was supported by the Defense Threat Reduction Agency, Basic Research Award \# HDTRA1-10-1-0051, to Northern Illinois University
Dielectric wakefield accelerators have shown great promise toward high-gradient acceleration. We investigate tow experiments in preparation to explore the performance of cylindrically-symmetric and slab-shaped dielectric-loaded waveguides. The planned experiments at Fermilab and DESY will use unique pulse shaping capabilities offered at these facilities. The superconducting test accelerator at FNAL will ultimately provide flat beams with variable current profiles needed for enhancing the transformer ratio. The FLASH facility at DESY recently demonstrated the generation of a ramped round beam current profile that will enable us to explore the performance of cylindrically-symmetric structures. Finally both of these facilities incorporate superconducting linear accelerator that could generate bunch trains with closely spaced bunches thereby opening the exploration of dynamical effects in dielectric wakefield accelerators. We present the planned layout and simulated experimental performances.
 
 
WEPZ009 Parametric-Resonance Ionization Cooling in Twin-Helix 2784
 
  • V.S. Morozov, Y.S. Derbenev
    JLAB, Newport News, Virginia, USA
  • A. Afanasev, R.P. Johnson
    Muons, Inc, Batavia, USA
  • B. Erdelyi, J.A. Maloney
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC0005589. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. For the implementation of PIC, we developed an epicyclic twin-helix channel with correlated optics. Wedge-shaped absorbers immediately followed by short rf cavities are placed into the twin-helix channel. Parametric resonances are induced in both planes using helical quadrupole harmonics. We demonstrate resonant dynamics and cooling with stochastic effects off using GEANT4/ G4beamline. We illustrate compensation of spherical aberrations and benchmark COSY Infinity, a powerful tool for aberration analysis and compensation.
 
 
WEPZ010 Modeling and Experimental Update on Direct Laser Acceleration 2787
 
  • I. Jovanovic, M.W. Lin
    Penn State University, University Park, Pennsylvania, USA
 
  Funding: This work is supported by the Defense Threat Reduction Agency under contract HDTRA1-11-1-0009.
Moderate-energy, high-repetition-rate electron beams are needed in a variety of applications such as those in security and medicine, while requiring that the acceleration be realized in a compact and relatively inexpensive package. Laser wakefield acceleration is an attractive technology which meets most of those requirements, but it requires the use of relatively high peak power lasers which do not scale readily to high repetition rates. We are developing the theoretical and experimental basis for advancing the science and technology of direct laser acceleration (DLA) of charged particles using the axial component of the electric field of a radially polarized intense laser pulse. DLA is an acceleration method which exhibits no threshold and is thus compatible with the use of lower peak power, but much higher repetition rate lasers. We are currently numerically investigating the conditions for quasi-phase-matched DLA of electrons in plasma waveguides and experimentally implementing the quasi-phase-matched waveguide structure in laser-produced plasmas.