Author: Schulte, D.
Paper Title Page
MOPO014 SVD-based Filter Design for the Trajectory Feedback of CLIC 511
 
  • J. Pfingstner, D. Schulte, J. Snuverink
    CERN, Geneva, Switzerland
  • M. Hofbaur
    UMIT, Hall in Tirol, Austria
 
  The orbit feedback of the Compact Linear Collider (CLIC) is the basic counter-measure against ground motion effects below 1 Hz in the beam delivery system and the main linac of CLIC. In this paper we present significant improvements of the orbit feedback design, by using time-dependent and spatial filters. The design procedure is based on a singular value decomposition (SVD) of the orbit response matrix and on loop-shaping techniques. This modified design has essential advantages compared to previous ones. The required beam position monitor resolution in the beam delivery system could be relaxed by a factor of five. At the same time the suppression of ground motion effects is improved. As a consequence, the tight tolerances for the allowable luminosity loss due to ground motion effects in CLIC can be met. The presented methods can be easily adapted to other accelerators in order to relax sensor tolerances and to efficiently suppress ground motion effects.  
 
TUYB03 CLIC Conceptual Design and CTF3 Results 961
 
  • D. Schulte
    CERN, Geneva, Switzerland
 
  An international collaboration is carrying out an extensive R&D programme to prepare CLIC, a multi-TeV electron-positron collider. In this concept, the colliding beams will be accelerated in very high gradient normal conducting 12 GHz accelerating structures. The necessary RF power is extracted from a high-current, low-energy drive beam that runs parallel to the colliding beams and is generated in a central complex. This year the collaboration will produce a conceptual design report to establish the feasibility of the technology. The CLIC concept will be introduced and the status of key studies of critical issues will be reviewed. A focus will be on the CLIC Test Facility 3 (CTF3), which is a test facility to produce and use high current a drive beam.  
slides icon Slides TUYB03 [13.204 MB]  
 
TUPC013 Simulation of Phase Stability at the Flat Top of the CLIC Drive Beam 1018
 
  • A. Gerbershagen, D. Schulte
    CERN, Geneva, Switzerland
  • P. Burrows
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  Funding: University of Oxford
The drive beam phase stability is one of the critical issues of the Compact Linear Collider (CLIC). In this paper the generation and propagation of drive beam phase errors is studied for effects that vary during the drive beam pulse. This includes the influence of drive beam current and phase errors as well as of drive beam accelerator RF phase and amplitude errors on the drive beam phase after the compressor chicanes and the analysis of the propagation of these errors through the drive beam combination scheme. The impact of the imperfections on the main beam is studied including the possible correction with help of a feedforward system.
 
 
TUPC019 Beam-based Alignment of CLIC Drive Beam Decelerator using Girders Movers 1036
 
  • G. Sterbini, D. Schulte
    CERN, Geneva, Switzerland
 
  The CLIC drive beams will provide the rf power to accelerate the colliding beams: in order to reach the design performance, an efficient transport of the drive beam has to be ensured in spite of its challenging energy spread and large current intensity. As shown in previous studies, the specifications can be met by coupling a convenient optics design with the state-of-the-art of pre-alignment and beam-based alignment techniques. In this paper we consider a novel beam-based alignment scheme that does not require quadrupole movers or dipole correctors but uses the motors already foreseen for the pre-alignment system. This implies potential savings in terms of complexity and cost at the expense of the alignment flexibility: the performance, limitations and sensitivity to pre-alignment tolerances of this method are discussed.  
 
TUPC020 Alignment and Wake Field Issues in the CLIC RTML 1039
 
  • F. Stulle, S. Döbert, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
 
  At main linac injection the particle beams need to stay within tight tolerances for the transverse emittances and the pointing stability. We study how these tolerances influence alignment requirements for the RTML components and the stability of the beams entering the RTML. An emphasize is put on the booster linac and the RF cavities of the second bunch compression stage since short and long range wake fields might strongly influence beam dynamics in these parts of the RTML.  
 
TUPC054 LHeC ERL Design and Beam-dynamics Issues 1120
 
  • S.A. Bogacz, I. Shin
    JLAB, Newport News, Virginia, USA
  • D. Schulte, F. Zimmermann
    CERN, Geneva, Switzerland
 
  We discuss machine and beam parameter choices for a Linac-Ring option of the Large Hadron electron Collider (LHeC) based on the LHC. With the total wall-plug power limited to 100 MW and a target current of about 6 mA the desired luminosity of 1033 cm-2 s-1 can be reached, providing one exploits unique features of the Energy Recovery Linac (ERL). Here, we describe the overall layout of such ERL complex located on the LHC site. We present an optimized multi-pass linac optics enabling operation of the proposed 3-pass Recirculating Linear Accelerator (RLA) in the Energy Recovery mode. We also describe emittance preserving return arc optics architecture; including layout and optics of the arc switch-yard. Furthermore, we discuss importance of collective effects such as: beam breakup in the RLA, as well as ion accumulation, with design-integrated mitigation measures, and the electron-beam disruption in collision. Finally, a few open questions are highlighted.  
 
TUPC124 Laser Wire Emittance Measurement Line at CLIC* 1308
 
  • H. Garcia, Yu.A. Kubyshin
    UPC, Barcelona, Spain
  • T. Aumeyr, G.A. Blair
    JAI, Oxford, United Kingdom
  • D. Schulte, F. Stulle
    CERN, Geneva, Switzerland
 
  A precise measurement of the transverse beam size and beam emittances upstream of the final focus is essential for ensuring the full luminosity at future linear colliders. A scheme for the emittance measurements at the RTML line of the CLIC using laser-wire beam profile monitors is described. A lattice of the measurement line is discussed and results of simulations of statistical and machine-related errors and of their impact on the accuracy of the emittance reconstruction are given. Modes of operation of the laser wire system and its main characteristics are discussed.  
 
TUPZ015 Electron Cloud Parameterization Studies in the LHC 1834
 
  • C.O. Domínguez, G. Arduini, V. Baglin, G. Bregliozzi, J.M. Jimenez, E. Métral, G. Rumolo, D. Schulte, F. Zimmermann
    CERN, Geneva, Switzerland
 
  During LHC beam commissioning with 150, 75 and 50-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities or emittance growth, were observed. The main strategy to combat the LHC electron cloud relies on the surface conditioning arising from the chamber-surface bombardment with cloud electrons. In a standard model, the conditioning state of the beam-pipe surface is characterized by three parameters: 1. the secondary emission yield; 2. the incident electron energy at which the yield is maximum; and 3. the probability of elastic reflection of low-energy primary electrons hitting the chamber wall. Since at the LHC no in-situ secondary-yield measurements are available, we compare the relative local pressure-rise measurements taken for different beam configurations against simulations in which surface parameters are scanned. This benchmark of measurements and these simulations is used to infer the secondary-emission properties of the beam-pipe at different locations around the ring and at various stages of the surface conditioning. In this paper we present the methodology and first results from applying the technique to the LHC.  
 
MOPO001 Interaction Point Feedback Design and Integrated Simulations to Stabilize the CLIC Final Focus* 475
 
  • G. Balik, L. Brunetti, G. Deleglise, A. Jeremie, L. Pacquet
    IN2P3-LAPP, Annecy-le-Vieux, France
  • A. Badel, B. Caron, R. Le Breton
    SYMME, Annecy-le-Vieux, France
  • A. Latina, J. Pfingstner, D. Schulte, J. Snuverink
    CERN, Geneva, Switzerland
 
  The Compact Linear Collider (CLIC) accelerator has strong precision requirements on offset position between the beams. The beam which is sensitive to ground motion needs to be stabilized to unprecedented requirements. Different Beam Based Feedback (BBF) algorithms such as Orbit Feedback (OFB) and Beam-Beam Offset Feedback (BBOF) have been designed. This paper focuses on the BBOF control which could be added to the CLIC baseline. It has been tested for different ground motion models in the presence of noises or disturbances and uses digital linear control with or without an adaptive loop. The simulations demonstrate that it is possible to achieve the required performances and quantify the maximum allowed noise level. This amount of admitted noises and disturbances is given in terms of an equivalent disturbance on the position of the magnet that controls the beam offset. Due to the limited sampling frequency of the process, the control loop is in a very small bandwidth. The study shows that these disturbances have to be lowered by other means in the higher frequency range.  
 
TUPC014 System Control for the CLIC Main Beam Quadrupole Stabilization and Nano-positioning* 1021
 
  • S.M. Janssens, K. Artoos, C.G.R.L. Collette, M. Esposito, P. Fernandez Carmona, M. Guinchard, C. Hauviller, A.M. Kuzmin, R. Leuxe, J. Pfingstner, D. Schulte, J. Snuverink
    CERN, Geneva, Switzerland
 
  The conceptual design of the active stabilization and nano-positioning of the CLIC main beam quadrupoles was validated in models and experimentally demonstrated on test benches. Although the mechanical vibrations were reduced to within the specification of 1.5 nm at 1 Hz, additional input for the stabilization system control was received from integrated luminosity simulations that included the measured stabilization transfer functions. Studies are ongoing to obtain a transfer function which is more compatible with beam based orbit feedback; it concerns the controller layout, new sensors and their combination. In addition, the gain margin must be increased in order to reach the requirements from a higher vibration background. For this purpose, the mechanical support is adapted to raise the frequency of some resonances in the system and the implementation of force sensors is considered. Furthermore, this will increase the speed of repositioning the magnets between beam pulses. This paper describes the improvements and their implementation from a controls perspective.  
 
TUPC023 Status of Ground Motion Mitigation Techniques for CLIC 1048
 
  • J. Snuverink, K. Artoos, C.G.R.L. Collette, F. Duarte Ramos, A. Gaddi, H. Gerwig, S.M. Janssens, J. Pfingstner, D. Schulte
    CERN, Geneva, Switzerland
  • G. Balik, L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • P. Burrows
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • B. Caron
    SYMME, Annecy-le-Vieux, France
  • J. Resta-López
    IFIC, Valencia, Spain
 
  The Compact Linear Collider (CLIC) accelerator has strong stability requirements on the position of the beam. In particular, the beam position will be sensitive to ground motion. A number of mitigation techniques are proposed - quadrupole stabilisation and positioning, final doublet stabilisation as well as beam based orbit and interaction point (IP) feedback. Integrated studies of the impact of the ground motion on the CLIC Main Linac (ML) and Beam Delivery System (BDS) have been performed, which model the hardware and beam performance in detail. Based on the results future improvements of the mitigation techniques are suggested and simulated. It is shown that with the current design the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed.