Author: McIntosh, P.A.
Paper Title Page
MOPC062 EMMA RF Comissioning 226
 
  • A.J. Moss, R.K. Buckley, P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  EMMA (Electron Model for Many Applications), the world’s first Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator is presently in operation at Daresbury Laboratory. The LLRF system is required to synchronize with ALICE (Accelerators and Lasers in Combined Experiments) its injector, which operates at 1.3GHz, and to produce an offset frequency of (+1.5 MHz to -4 MHz) to probe the longitudinal beam dynamics and to also maintain the phase and amplitude of the 19 copper RF cavities of the EMMA machine. The design, commissioning and results of the EMMA RF system is presented.  
 
TUPC026 Status of the Crab Cavity Design for the CLIC 1054
 
  • P.K. Ambattu, G. Burt, A.C. Dexter
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • A. Grudiev
    CERN, Geneva, Switzerland
  • R.M. Jones
    UMAN, Manchester, United Kingdom
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  RF design of a crab cavity (2π/3, 11.9942 GHz) for the Compact Linear Collide (CLIC) is presented. As part of the UK-CLIC collaboration, CERN is building two copper prototypes, designed by Lancaster University / Cockcroft Institute. The first prototype to be made will be a 12 cell undamped cavity and the second will be waveguide damped cavity. The RF test at CERN will help characterisation of the dipole mode with X-band RF pulses of 15 MW peak power and pulse length of ~242 ns. Since the cavity frequency and phase advance per cell are identical to those of the CLIC main linac, the first prototype could exploit CERN’s X-band cavity characterisation facilities. A fully damped cavity will be required for the actual machine in order to meet the luminosity specs. The damped prototype will use an identical coupler type as the undamped one, but the cells will have damping waveguides with / without dielectric material.  
 
TUODA03 The Status of the ALICE Accelerator R&D Facility at STFC Daresbury Laboratory 934
 
  • F. Jackson, D. Angal-Kalinin, R. Bate, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, D.J. Dunning, J.-L. Fernández-Hernando, A.R. Goulden, S.F. Hill, D.J. Holder, S.P. Jamison, J.K. Jones, L.B. Jones, A. Kalinin, S. Leonard, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, A.J. Moss, B.D. Muratori, T.T. Ng, J.F. Orrett, S.M. Pattalwar, Y.M. Saveliev, D.J. Scott, B.J.A. Shepherd, A.D. Smith, R.J. Smith, S.L. Smith, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Harrison, G.M. Holder, A.L. Schofield, P. Weightman, R.L. Williams, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • M.D. Roper
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Surman
    STFC/DL/SRD, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Science and Technology Facilities Council
The ALICE accelerator, the first energy recovery machine in Europe, has recently demonstrated lasing of an infra-red free electron laser (IR-FEL). The current status of the machine and recent developments are described. These include: lasing of the IR-FEL, a programme of powerful coherent terahertz radiation research, electro-optic diagnostic techniques, development of high precision timing and distribution system, implementation of digital low level RF control. ALICE also serves as an injector for the EMMA non-scaling FFAG machine.
 
slides icon Slides TUODA03 [1.648 MB]  
 
WEPC158 The EMMA Accelerator, A Diagnostic Systems Overview 2355
 
  • R.J. Smith, M. Dufau, C. Hill, J.K. Jones, A. Kalinin, L. Ma, P.A. McIntosh, B.D. Muratori, B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.S. Berg
    BNL, Upton, Long Island, New York, USA
  • N. Bliss, G. Cox, A. Gallagher, A. Oates
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • R.G. Borrell
    WareWorks Ltd, Manchester, United Kingdom
  • J.L. Crisp
    FRIB, East Lansing, Michigan, USA
  • K.M. Hock, D.J. Holder
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.G. Ibison, I. Kirkman
    The University of Liverpool, Liverpool, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  The ‘EMMA’ Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyse the single bunch beams. An upgrade still to implement includes the installation of a fast wall current monitor. This paper gives an overview of these systems and shows some data and results that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.