Author: Hsu, K.T.
Paper Title Page
MOPO015 Operation Status of Bunch-by-bunch Feedback System in the TLS 514
  • C.H. Kuo, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, K.H. Hu, C.-Y. Liao
    NSRRC, Hsinchu, Taiwan
  There are several FPGA based bunch-by-bunch feedback systems that were deployed in the Taiwan Light Source now. They play various roles to suppress beam instability. By using SPring-8 designed feedback processors is pioneer to apply in the storage ring of TLS successfully and help Dimtel system to be quick commission. The Dimtel feedback system provide a life spare unit and explore to control system integration especially to the EPICS toolkit system. Rich functionality includes of excitation of individual bunch or specifies bunches, averaged spectrum, tune measurement by the feedback dip in the averaged spectrum. Operation status of the system will be summary in this report.  
MOPO016 Commissioning Tune Feedback in the Taiwan Light Source 517
  • C.H. Kuo, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, K.H. Hu, C.-Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
  The tune control is important parameter in the insertion devices operation. There are many difference type insertion devices are disturbed in the storage ring of TLS. The traditional feed-forward control to correct orbit change and tune shift that isn’t enough when difference type insertion devices are operated with various condition. The tune feedback is used to solve the tune change problem. The stable tune measurement is necessary in the stable storage ring. There are various excited bunch train methods to get stable tune that will be also discussed in this report.  
MOPO040 RF Reference Distribution for the Taiwan Photon Source 571
  • K.H. Hu, Y.-T. Chang, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, S.Y. Hsu, C.H. Kuo, D. Lee, C.-Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
  Taiwan Photon Source (TPS) is a low-emittance 3-GeV synchrotron light source with circumference of 518.4 m which is being under construction at National Synchrotron Radiation Research Center (NSRRC) campus. Low noise 500 MHz master oscillator and novel fiber based CW RF reference distribution system will be employed to take advantages of advanced technology in this field and deliver better performance. The preliminary test of the prototype system is summarized in this report.  
MOPO041 Preliminary Testing of TPS Timing System 574
  • C.Y. Wu, Y.-T. Chang, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Kuo, C.-Y. Liao
    NSRRC, Hsinchu, Taiwan
  The timing system of Taiwan Photon Source (TPS) provides synchronization for electron gun, modulators of linac, pulse magnet power supplies, booster power supply ramp, bucket addressing of storage ring, diagnostic equipments, beamline gating signal for top-up injection. The timing system utilizes a central event generator to generate events and distribute them over optic fiber network, and decodes them at the event receivers. The system supports uplink functionality which will be used for the fast interlock system to distribute signals like beam dump and post-mortem trigger. The timing system has now been in operation for Linac of TPS. This paper presents prototype for the timing system of TPS.  
TUPC144 Preliminary BPM Electrics Testing for the Taiwan Photon Source Project 1362
  • C.H. Kuo, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, K.H. Hu, C.-Y. Liao
    NSRRC, Hsinchu, Taiwan
  The preliminary BPM electrics are developing and testing for Taiwan Photon Source (TPS), is a 3 GeV synchrotron light source which being in construction at NSRRC. This new BPM electronics with integrated FPGA based hardware, and will be testing in the TLS (Taiwan Light Source) with real beam at first. The enhance functionality of current generation will be adopted in the TPS. The electronic prototype testing and relative property will be reported in this report.  
TUPC145 Vibration and Beam Motion Monitoring in TLS 1365
  • Y.K. Chen, J. Chen, P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Kuo
    NSRRC, Hsinchu, Taiwan
  Due to asynchronous nature of various vibration and beam motion related subsystems, it is hard to analysis the correlation between them. Therefore, the synchronous distributed data acquisition system is designed to make an improvement for better analysis. For different circumstances, the system supports two data flow: one is display the real-time data which could be archived continuously and the other is waveform which could be acquired on demand or triggered by event with high sampling rate. In addition, the viewer will improve some useful features, such as trigger by customize signal or EPICS PV record, automatic screenshot and plot the multiple history events. The preliminary test results and implementation details will be summarized in this report.  
TUPC146 Beam Profiles Analysis for Beam Diagnostic Applications 1368
  • C.-Y. Liao, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.H. Kuo, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
  Beam profile and its analysis play an important role in beam diagnostics of a particle accelerator system. Use of destructive screen monitor or non-destructive synchrotron radiation monitor for beam profile measurement is a simple way and has been widely used in synchrotron light source facility. Analyze beam profiles can obtain beam parameters including beam center, σ, and tilt angle which has become a useful tool for beam diagnostic. In this report the comparison of fitting strategies affect the analysis results are studied. The computer simulated beam profiles with different background noise level and conditions are used to evaluate the computing time, and the estimated fitting errors.  
WEPC038 Beam Line Design and Beam Measurement for TPS Linac 2091
  • K.L. Tsai, H.-P. Chang, C.-T. Chen, C.-S. Fann, K.T. Hsu, S.Y. Hsu, C.-Y. Liao, K.-K. Lin, H.M. Shih
    NSRRC, Hsinchu, Taiwan
  • K. Dunkel, C. Piel
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
  A beam line for examining the beam quality of TPS (Taiwan Photon Source) linac was designed and constructed in NSRRC. Beam parameters, such as energy, emittance and charge etc., are verified by using the equipments setup in the beam line for this purpose. The lattice design and its manipulation for the parameter measurements are presented in this report. Preliminary results and the tools associating with the measurement are briefly described.  
WEPC156 Virtual Power Supply Control Environment for the TPS Project 2349
  • Y.-S. Cheng, Y.-T. Chang, J. Chen, P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Kuo, C.-Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
  The Taiwan Photon Source (TPS) is the latest generation of 3 GeV synchrotron light source which has been under construction since 2010. The control system infrastructure of TPS project is based upon the EPICS framework. In order to develop the control applications before power supplies of magnets delivered, it is necessary to set up the virtual control environment to develop high level application programs for the power supplies of magnets in advance. The high level application programs include operation process, degauss process and etc. for power supplies of magnet. The soft-IOCs (Input Output Controller) and various database records are needed to be built to simulate the power supply control environment. In addition, the operation interfaces of power supply will be designed and integrated according to location properties. The efforts will be described at this report.  
WEPC157 Post-mortem Analysis at TLS 2352
  • Y.R. Pan, Y.-T. Chang, J. Chen, P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Kuo, C.-Y. Liao
    NSRRC, Hsinchu, Taiwan
  High availability and stability of the beam are important issues for the synchrotron light source. Analyzing of the post-mortem data is one of the most important approaches to reflect the machine error and identify the reason of beam trip. The post-mortem system has been developed at Taiwan Light Source (TLS) in 2008. This diagnostic data can provide useful information for troubleshooting and improve the beam reliability. The various diagnostic signals are read from hardware buffer and written to the file system by the post-mortem event trigger, which is generated by the signals of the beam trip detector, the superconducting RF system interlock and the superconducting insertion device interlock. In this report a processing is running to check whether a new trip event, promptly find out the unusual signals, and generate an analyzing result message. The detail will be discussed and summarized.