Author: Chen, J.-R.
Paper Title Page
MOPO031 Alignment of theTPS Front-End Prototype 550
 
  • C.K. Kuan, Y.T. Cheng, W.Y. Lai, I.C. Sheng, T.C. Tseng, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is a 3-GeV third-generation source of synchrotron radiation with beam current 500 mA stored in the storage ring. A front end allows intense synchrotron light generated in the storage ring to pass through to a beamline. Most heat load of the synchrotron light is removed in the front ends to protect the beamline components. Alignment of front-end components becomes important to prevent damage from the large heat load. Because of the many front ends and the brief period of installation, the alignment work should be easy, quick and reliable. Using a shim method, the adjustable degrees of freedom are decreased from six to two. This adjustment work becomes easier and quicker. The alignment of a front-end prototype is described here.  
 
MOPO033 Design and Development of a Laser Positioning System for TPS Magnets Alignment Inspection during the Installation on a Girder 556
 
  • Chen, M. L. Chen, H.C. Ho, K.H. Hsu, W.Y. Lai, S.Y. Perng, Y.L. Tsai, T.C. Tseng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  A novel optical inspection architecture is designed and developed for positioning the TPS (Taiwan Photon Source) quadrupole and sextupole magnets on the girder within 30 um. This positioning system is a laser-based scheme consists of two laser position sensing devices (PSD) and two granite blocks as the standard reference of magnets. The laser position sensing device (PSD) is mounted on an adjustable circular steel module and the module is installed in a granite block. With the PSD position being adjusted and corrected, the PSD module center can be identical to the ideal pole position of magnets on the girder within 10um. The Laser ray is also adjusted and aligned according to the ideal reference line of magnets. Finally the granite blocks are replaced with the quadrupole and sextupole magnets at installation, the assembling error of magnets can be detected from the PSD module. This paper describes the detail of the system development and testing results.  
 
MOPO034 From Survey Alignment toward Auto-alignment for the Installation of the TPS Storage Ring Girder System 559
 
  • T.C. Tseng, Chen, M. L. Chen, H.C. Ho, K.H. Hsu, W.Y. Lai, C.J. Lin, H.M. Luo, S.Y. Perng, P.L. Sung, Y.L. Tsai, H.S. Wang
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The TPS (Taiwan Photon Source) project is now under civil construction. The whole building is constructed half underground and 12m deep compared to the TLS due to the stability consideration, so the survey and alignment works are quite confined and difficult. For positioning the magnets precisely and quickly, a high accuracy auto-tuning girders system combined with survey network procedures were established to accomplish the installation tasks. The position data from the survey network will define a basis for the motorized girder system to auto-tune and improve the accuracy. A mockup of one twenty-fourth section (one cell) had been installed at NSRRC for interface examination and further testing. In this paper, the procedures from the traditional survey network to auto-aliment system design and algorithm are described. Meanwhile, a preliminary testing result is also included.  
 
TUODB01 Progress of the Construction for the TPS Vacuum System 976
 
  • G.-Y. Hsiung, C.K. Chan, C.H. Chang, C.-C. Chang, C.L. Chen, C.M. Cheng, Y.T. Cheng, S-N. Hsu, H.P. Hsueh, I.T. Huang, T.Y. Lee, I.C. Sheng, L.H. Wu, H.Y. Yan, Y.C. Yang, C.S. huang
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  Vacuum system for the 3 GeV Taiwan Photon Source (TPS) has been started the construction since 2010. The critical components such as the bellows and gate valves with rf-contact shielding, pulsed magnet kicker ceramic chambers, BPM, crotch absorbers, etc. have been manufactured and tested. Aluminum alloy (Al-) vacuum chambers for the arc-cells have been machined and undergoing the in-house welding. Mass production of the vacuum equipments including the ion gauges, ion pumps, NEG pumps, and gate valves, has been contracted out and partially delivering following the schedule of the cell assembling. Each cell, contains two short Al-straight chambers and two Al-bending chambers, has been started the assembling and on-site welding on the pre-aligned girders in clean room forming an one-piece vacuum vessel about 14 m in length following by the vacuum baking to the ultra-high vacuum. The conceptual design of the vacuum systems for the long straight sections, the concentric booster, and the transport lines, will be addressed. The progress of prototyping development and the status of construction for the TPS vacuum system will be described in this paper.  
slides icon Slides TUODB01 [35.595 MB]  
 
TUPS029 Development of a Feedthrough with Small Reflection for the TPS BPM 1593
 
  • Huang, Y.T. Huang, C.-C. Chang, C.L. Chen, G.-Y. Hsiung, S-N. Hsu, H.P. Hsueh
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The TPS BPM feedthrough is a coaxial cable with a structure of a kind for which power loss occurs readily at places at which exists an impedance mismatch. With an impedance equation for a simple coaxial cable combined with a multi-dielectric modification, a model feedthrough with small reflection has been designed. With careful setting of brazing conditions and precise control of the dimensions of devices, a TPS prototypical BPM feedthrough having a reflection coefficient less than 0.05 was manufactured. The eccentricity was constrained within 0.03 mm, and the deviation of measured capacitance of button electrodes was less than 7 %.  
 
TUPS031 The Installation of One 14 Meter Cell of TPS Vacuum System 1599
 
  • H.P. Hsueh, C.K. Chan, C.H. Chang, C.-C. Chang, C.L. Chen, C.M. Cheng, Y.T. Cheng, G.-Y. Hsiung, S-N. Hsu, I.T. Huang, T.Y. Lee, H.Y. Yan, Y.C. Yang, C.S. huang
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  The construction of a new 3 GeV synchrotron facility, Taiwan Photon Source, is ongoing. The vacuum system has been designed with off-site baking for arc section from sector gate valve to sector gate valve. There is no flange used in this arc section besides the two ends connected to sector gate valves. It is a tedious works for install such long vacuum system with aluminum chambers. In this poster, all the detailed installation procedures will be described. All the precaution inspection procedures for all vacuum components to prevent failed components to be installed will also be described. Every three weeks, one cell will be assembled and stored. Experience is being learned and could be used for the vacuum system of future new accelerator like FEL and others.  
 
TUPS067 Photon-stimulated Desorption Experiment for a TPS Crotch Absorber 1692
 
  • Y.T. Cheng, G.-Y. Hsiung, C.K. Kuan, A. Sheng, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  National Synchrotron Radiation Research Center (NSRRC) is constructing a large third-generation synchrotron accelerator in Taiwan, the so-called Taiwan Photon Source (TPS). This 3-GeV, 500-mA machine will generate high-density bending-magnet radiation, of which 90 % of the power is absorbed by the crotch absorber in the storage ring. To understand better the beam-cleaning and photon-desorption phenomena of a copper crotch absorber, we have performed a PSD (photon-stimulated desorption) test in Taiwan Light Source (TLS) at Beam line 19 (BL19). Some mathematical modelling, experimental designs and results are also presented here.  
 
MOPO032 The Survey Status at NSRRC during the TPS Civil Construction 553
 
  • H.M. Luo, J.-R. Chen, Chen, M. L. Chen, H.C. Ho, K.H. Hsu, W.Y. Lai, C.J. Lin, S.Y. Perng, P.L. Sung, Y.L. Tsai, T.C. Tseng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  In this paper, the survey status at NSRRC site duirng the TPS (Taiwan Photon Source) civil construction is described. The TLS (Taiwan Light Source) ring is still under operation in the meantime. In order to maintain the TLS for normal operation and also monitoring the building construction, an expanded survey setups including permanent leveling and GPS monuments were installed both on the site and TPS building. Combined with the orignal TLS survey sockets and sensor monitoring system (hydrostatic leveling system and precision inclination sensors) installed both in the TLS storage ring and beamlines, an extensive survey tasks were performed. The ground deformation situation of the TLS and deviation of the TPS building construction are presented.  
 
TUPS030 Manufacturing and Vacuum Testing of Aluminum Bending Chambers for TPS 1596
 
  • Y.C. Yang, C.K. Chan, C.-C. Chang, C.L. Chen, J.-R. Chen, G.-Y. Hsiung, S-N. Hsu, T.Y. Lee
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is an aluminum alloy vacuum system with 518.4 m circumference divided into 24 sections. A6061T6 aluminum alloy material is used for TPS bending chambers. Each aluminum bending chamber is component of 2 half plates, about 3.5~4.2 m in length and~0.6 m in width, were oil-free CNC machined, ozone cleaned, and TIG welding in clean room. The deformation < 0.1 mm and leakage rate < 2x10-9mbar. L/s for each welded bending chamber has inspected and achieved. A bending chamber is inspecting the thermal outgassing rate test and ultimate pressure. The manufacturing and vacuum test will be described in this paper.  
 
TUPS064 Construction Status of the Utility System for the 3GeV TPS Storage Ring 1683
 
  • J.-C. Chang, J.-R. Chen, Y.-C. Chung, C.K. Kuan, K.C. Kuo, J.-M. Lee, Y.-C. Lin, C.Y. Liu, I. Liu, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  The construction of the utility system for the 3.0 GeV Taiwan Photon Source (TPS) has been contracted out in the end of 2009. The whole construction of the utility system is scheduled to be completed in the end of 2012. Total budget of this construction is about four million dollars. The utility system includes the electrical power, cooling water, air conditioning, compressed air and fire control systems. The TPS construction site is located adjacent to TLS. Some areas of TPS and TLS are overlapped. Under tight schedule, limit budget and geographic constrains, it is a challenge to complete the utility system construction of TPS on time, on budget, and to specification. This paper presents some main issues and status of the utility system construction for the TPS storage ring.  
 
TUPS066 Design of Front End Safety Interlock System for Taiwan Photon Source 1689
 
  • H.Y. Yan, J.-R. Chen, G.-Y. Hsiung, C.K. Kuan, I.C. Sheng, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  Safety interlock is one of critical subsystems in synchrotron radiation accelerator. A front end (FE) interlock prototype system has been designed, fabricated, and initially tested for Taiwan Photon Source (TPS). TPS FE interlock logic is designed based on that of Taiwan Light Source (TLS), and moderately modified due to the accelerator parameter discrepancy between TPS and TLS. The programmable automation controllers (PAC) have been utilized in FE safety interlock system for their reliability, convenience, processing capability, communication, and stability in user interface. In FE PAC system, touch panels are used as the graphical user interface (GUI) to control and monitor FE components. In addition, with GUI control it is used to beam position monitoring devices as well as confined beam sizes aperture for beam line users. The interlock design such as data acquisition and parameters monitoring for vacuum pressure, flow rate of cooling water, pressure of compressive air, chamber and water temperature, and overall interlock logic are also presented in this paper.