Keyword: LabView
Paper Title Other Keywords Page
MOBL05 Photon Science Controls: A Flexible and Distributed LabVIEW Framework for Laser Systems distributed, controls, software, hardware 62
  • B.A. Davis, B.T. Fishler, R.J. McDonald
    LLNL, Livermore, California, USA
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LabVIEW software is often chosen for developing small scale control systems, especially for novice software developers. However, because of its ease of use, many functional LabVIEW applications suffer from limits to extensibility and scalability. Developing highly extensible and scalable applications requires significant skill and time investment. To close this gap between new and experienced developers we present an object-oriented application framework that offloads complex architecture tasks from the developer. The framework provides native functionality for data acquisition, logging, and publishing over HTTP and WebSocket with extensibility for adding further capabilities. The system is scalable and supports both single process applications and small to medium sized distributed systems. By leveraging the framework, developers can produce robust applications that are easily integrated into a unified architecture for simple and distributed systems. This allows for decreased system development time, improved onboarding for new developers, and simple framework extension for new capabilities.
slides icon Slides MOBL05 [3.178 MB]  
DOI • reference for this paper ※  
About • Received ※ 09 October 2021       Accepted ※ 16 November 2021       Issue date ※ 14 March 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPV011 Interfacing EPICS and LabVIEW Using OPC UA for Slow Control Systems EPICS, experiment, controls, hardware 405
  • J. Mostafa, A. Beglarian, S.A. Chilingaryan, A. Kopmann
    KIT, Eggenstein-Leopoldshafen, Germany
  The ability of EPICS-based control systems to adapt to heterogeneous architectures made EPICS the defacto control system for scientific experiments. Several approaches have been made to adapt EPICS to LabVIEW-based cRIO hardware but these approaches including NI EPICS ServerI/O Server: (1) require a lot of effort to maintain and run especially if the controllers and the process variables are numerous; (2) only provide a limited set of metadata; or (3) provide a limited set of EPICS features and capabilities. In this paper, we survey different solutions to interface EPICS with LabVIEW-based hardware then propose EPICS OPCUA device support as an out-of-the-box interface between LabVIEW-based hardware and EPICS to preserve most of EPICS features and provide reasonable performance for slow control systems.  
poster icon Poster TUPV011 [0.424 MB]  
DOI • reference for this paper ※  
About • Received ※ 20 September 2021       Revised ※ 21 October 2021       Accepted ※ 16 November 2021       Issue date ※ 21 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)