18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-TUPVO11

INTERFACING EPICS AND LabVIEW USING OPC UA FOR SLOW
CONTROL SYSTEMS

Jalal Mostafa, Armen Beglarian, Suren A. Chilingaryan, Andreas Kopmann
Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

Abstract

The ability of EPICS-based control systems to adapt to
heterogeneous architectures made EPICS the defacto control
system for scientific experiments. Several approaches have
been made to adapt EPICS to LabVIEW-based cRIO hard-
ware, but these approaches, including NI EPICS Serverl/O
Server: (1) require a lot of effort to maintain and run, es-
pecially if the controllers and the process variables are
numerous; (2) only provide a limited set of metadata; or
(3) provide a limited set of EPICS features and capabili-
ties. In this paper, we survey different solutions to interface
EPICSwith LabVIEW-based hardware then propose EPICS
OPCUA device support as an out of the box interface be-
tween LabVIEW-based hardware and EPICS to preserve
most of EPICS features and provide reasonable performance
for slow control systems.

INTRODUCTION

The KArlsruhe TRItium Neutrino (KATRIN) experiment
is a large-scale scientific experiment to determine neutrino
mass using Tritium beta decay [1]. Large-scale scientific
experiments like KATRIN employ diverse hardware from
different vendors to support the control system infrastruc-
ture, e.g., NI cRIO, Siemens S7, custom hardware chips,
etc. For instance, KATRIN employs around 10,000 pro-
cess variables that are distributed in bunches of 100 to 300
process variables on different NI cRIO, NI cFieldPoint, and
Siemens S7 devices. The heterogeneity of such systems
imposes a new challenge of providing a unified layer of
control and interoperability between these heterogeneous
systems and other services like alerts, data archiving, and
analysis. The Experimental Physics and Industrial Control
System (EPICS) solves this problem using an intermediate
C++ software layer.

EPICS is a set of tools and libraries to develop distributed
server-client control systems for large-scale scientific exper-
iments e.g. particle accelerators. It can solve the challenge
of heterogeneity by acting as an abstract software layer for
all devices through implementing a C++ abstraction inter-
face called Device Support. Operator’s setpoints and sensor
measurements are then channeled through EPICS server or
Input/ Output Controller (IOC) using one of EPICS network
protocols: Channel Access (CA) and its successor Process
Variable Access (PVA). Figure 1 shows a simplified illustra-
tion of the EPICS server architecture of the EPICS server.
An EPICS server keeps all process variables in in-memory
structures called Database. When a client asks for a process
variable, the EPICS server access these structures using a
module called Database Access. The EPICS server can read

Device Control and Integrating Diverse Systems

data from the hardware using the device support layer where
the data is mapped to the corresponding process variable
through database access and then published on the network
using CA or PVA. Operator’s setpoints work similarly, but
in the opposite direction: an EPICS client (the operator)
sets a process variable on an EPICS server using CA or
PVA, which is implemented on the hardware using Device
Support.

This architecture imposes new challenges on the interop-
erability between EPICS and NI LabVIEW-based cRIOs.
The LabVIEW programming environment offers very tight
integration with EPICS. Several approaches have been made
to provide an integration for LabVIEW with EPICS, but
they usually require an effort to maintain and run, provide a
limited set of metadata, or provide a limited set of EPICS
features and capabilities. In this paper, we propose an EPICS-
LabVIEW integration based on Open Platform Communica-
tions Unified Architecture (OPC UA) protocol.

Network
A
v
CA/PVA Protocols
A

A 4

Server Database

Database Access

Device Support |
A A A

[Y Hardware [¥Y Y

Figure 1: EPICS Server Simplified Internal Architecture.

RELATED WORKS

Several works have been done before to interface Lab-
VIEW with EPICS: most notable is EPICS Server I/O
Server [2]. EPICS Server I/O Server is a complete imple-
mentation of EPICS CA protocol for LabVIEW from NI. It
allows the developer to create LabVIEW Shared Variables
to publish EPICS process variables on the network, a com-
plicated process that involves many clicks to accomplish a
simple task, especially when the process variables are numer-
ous. The metadata that EPICS Server I/O Server provides is
limited to alarms only leaving behind important metadata
like description and engineering units.

TUPVO011
405

=

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

©

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

Another LabVIEW/EPICS interface that depends on
Shared Variables is NetShrVar [3]. NetShrVar uses the pro-
prietary NI-PSP protocol to bind a process variable in an
EPICS C++ server to a LabVIEW shared variables using a
set of complex configurations written in XML.

IvPortDriver [4] allows users to develop EPICS device
support in LabVIEW code and to start an EPICS C++ server
through the same LabVIEW program. This is possible
through an asynDriver [5] C++ layer and a LabVIEW VI
library. Although IvPortDriver inherits platform indepen-
dency from EPICS but compilation and deployment are still
needed for each specific NI target CPU architecture.

[6-8] employs shared memory between LabVIEW pro-
gram and EPICS C++ server to interface EPICS with Lab-
VIEW. Other than being in need to compile for each NI
target architecture, these solutions are platform-specific and
they are hard to port from one operating system to another.

IRIO [9], Nheengatu [10] allow developers to run EPICS
on cRIO and other NI devices based on a middleware library
that allows direct access to NI hardware, but it depends on
the target architecture.

EPICS-LABVIEW INTERFACE USING OPC

UA
EPICS Client Ez:fesr NI GRIO
OPC UA OPC UA
— Client Server

Figure 2: EPICS/OPC UA Architecture.

OPC UA provides seamless integration with EPICS. It
is an open service-oriented protocol that can run on any
hardware and operating system and thus provides a good
fit for interoperability between EPICS and LabVIEW-based
hardware.

Figure 2 shows how EPICS can interface with LabVIEW.
The LabVIEW developer writes standard OPC UA code on
the target device. An standard EPICS server can communi-
cate to the OPC UA server running on the LabVIEW target
using a device support module for OPC UA [11].

The OPC UA Device Support for EPICS provides the
easy representation of hierarchical data structures, access
control, and data monitoring. All standard data types for
both input and output are supported. It adds an extra record
type opcualtem which allows representing OPC UA objects
in EPICS by destructing the OPC UA object to standard data
types records.

The OPC UA server/client architecture abstracts the com-
munication of EPICS with the cRIO and thus allows deploy-
ing a one-time compilation EPICS server on any commodity
server or virtual machines or containers to add modularity,
isolation, and scalability to the architecture.

TUPVO011
406

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-TUPVO11

PERFORMANCE EVALUATION

To evaluate this architecture for slow control systems like
KATRIN, we launch an OPC UA server on NI cRIO 9047
and then run an EPICS server running on a workstation with
Intel Xeon CPU E5-1630 v3 @ 3.70 GHz and 1 Gbps Ether-
net connection, and linked to the cRIO through the EPICS
OPC UA Device Support module. The OPC UA objects in
our experiments are represented using a flat data architec-
ture: each process variable is represented by an OPC UA
variable inside a distinct OPC UA object. We operate exper-
iments by simulating sensors (read from cRIO to EPICS)
and setpoints (write to cRIO through EPICS). Table 1 shows
the experimental setup of 300 process variables based on
the requirements of the KATRIN control system.

Table 1: Update Rate and Expected Ne of Elements for Each
of the 300 Values

Update Rate Exp. Ne of Values in 1 Hr.
10Hz 36000
2Hz 7200

Sensor Mode

We launch two experiments for the sensor mode evalu-
ation where, in both experiments, the OPC UA server on
the cRIO is generating incremental values for each of the
300 process variables for a duration of an hour: (1) 2Hz
experiment, one value for each of the process variables every
500 ms; and (2) 10 Hz experiment, one value every 100 ms.
The EPICS server is monitoring all the 300 variables in both
experiments over one OPC UA subscription, then we use
PyEPICS[12] to read the values from the EPICS variables
through CA monitoring. The EPICS OPC UA Device Sup-
port is configured to use the timestamp from the OPC UA
protocol.

In an hour interval, we noticed that the expected number
of values for each record is attained. No loss of data in both
10 Hz and 2 Hz experiments.

Setpoints Mode

We simulate setting values to actuators through EPICS and
that are controlled by the OPC UA server. We then launch an
EPICS client developed in C with real-time priority threads
(one thread per process variable), as illustrated in Fig. 3.
We want to check two metrics in this mode: lost values rate
and response time (time delay between setting the value in
EPICS and implementing the setpoint in the OPC UA server).
This is possible through having two records for each EPICS
process variable in the EPICS database: (1) the ao output
record to output the variable to the OPC UA server using
EPICS timestamp, and (2) the ai readback record to read the
process variable values back using an OPC UA subscription
and OPC UA timestamp. We then monitor both records; the
loss rate is then computed by comparing values from both
monitors (output and readback).

Device Control and Integrating Diverse Systems

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems
ISBN: 978-3-95450-221-9 ISSN: 2226-0358

OPC UA Server

Var1 <
—

NI cRIO

OPC UA Subscription

vari
(output)

Push
Values

Tcsl

Workstation

var1_rb
L (readback)

Monitoring
Values

Figure 3: Setpoints Mode Experimentation.

Loss Rate of 10Hz Output and Readback Records

0.6 -
0.5 -
0.4 -

0.3 -

Loss Rate (%)

0.2 -

0.1-

0.0 - g
Readback Record

Outputhecurd
Figure 4: Comparison of Data Loss between the Output
Record and the Readback Record in 10 Hz Experiment for
the 300 Process Variables.

While the loss at 2 Hz is zero in the output and the read-
back records, the loss rate at 10 Hz is zero for the output
record but around 0.6% for the readback in an hour exper-
iment interval which means EPICS has processed the set-
points very well, but the OPC UA server did not implement
them. Figure 4 shows the loss rate of the output record using
the output monitor and that of the readback record using the
readback monitor.

CONCLUSION

Using OPC UA protocol can be a good connection inter-
face to integrate EPICS C++ code and NI LabVIEW-based
hardware without a strong impact on performance for slow
control systems. Comparing both 2Hz and 10 Hz experi-

Device Control and Integrating Diverse Systems

ICALEPCS2021, Shanghai, China JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2021-TUPVO11

ments, we notice the performance is limited by the OPC UA
server which depends on the performance of the cRIO or the
system hosting it. Therefore, we plan to use this architecture
for the KATRIN experiment where the maximum update
rate is 2 Hz and can guarantee no data loss.

REFERENCES

[1] J. Wolf, “The KATRIN neutrino mass experiment,” Nu-
clear Instruments and Methods in Physics Research Sec-

tion A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment, vol. 623, no. 1, pp. 442-444, 2010, 1st

International Conference on Technology and Instrumenta-
tion in Particle Physics, 1ssn: 0168-9002. por: https://
doi.org/10.1016/j .nima.2010.03.030. https:
//www.sciencedirect.com/science/article/pii/
S0168900210005942
A. Veeramani, T. Debelle, W. Blokland, R. Dickson, A.
Zhukov, and O. RAD, “Options for interfacing EPICS to
COTS hardware through LabVIEW,” 2009, THD004.
Network shared variable epics support module, (2013), http:
//epics.isis.stfc.ac.uk/doxygen/NetShrVar/
IvPortDriver, (2020), https : / / github . com / lanl /
lvPortDriver
Epics asyn driver, (2021), https://epics.anl . gov/
modules/soft/asyn/
D. Thompson and W. Blokland, “A shared memory inter-
face between LabVIEW and EPICS,” in Proceedings of
ICALEPCS2003, Korea, 2003, pp. 275-277.
A. Liyu, W. Blokland, and D. Thompson, “Labview library
to epics channel access,” in Proceedings of the 2005 Par-
ticle Accelerator Conference, 2005, pp. 3233-3234. por:
10.1109/PAC.2005.1591423.
G. Li and J. Zhao, “Application of LabVIEW-EPICS in mea-
suring and monitoring system of BEPCIL,” Nuclear Electron-
ics and Detection Technology, vol. 26, no. 2, pp. 222-225,
2006.
M. Ruiz et al., “IRIO technology: Developing applications
for advanced DAQ systems using FPGAs,” in 2016 IEEE-
NPSS Real Time Conference (RT), 2016, pp. 1-5. por: 10.
1109/RTC.2016.7543090.
D. Alnajjar, G. Fedel, and J. Piton, “Project Nheengatu:
EPICS support for CompactRIO FPGA and LabVIEW-RT,”
in 17th International Conference on Accelerator and Large
Experimental Physics Control Systems, Oct. 2019. por: 10.
18429/3ACoW-ICALEPCS2019-WEMPLOO2.
R. Lange et al., “Integrating OPC UA Devices in EPICS,” in
18th International Conference on Accelerator and Large Ex-
perimental Physics Control Systems, Oct. 2021, MOPV026.
[12] Pyepics, (2014), https : / / pyepics . github . io /
pyepics/

2

—

3

—

[4

—_

[5

—

[6

—_

[7

—

[8

—_—

(9]

(10]

(11]

TUPV011
407

©=2d Content from this work may be used under the terms of the CC BY 3.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

