TUPV011 Interfacing EPICS and LabVIEW using OPC UA for Slow Control Systems

J. Mostafa, A. Beglarian, S. Chilingaryan, A. Kopmann

Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

ICALEPCS 2021

KATRIN Slow Control System

- Heterogeneous System managed by different institutes and parties e.g. NI cRIO/cFieldPoint, Siemens S7
- ~10,000 Process Variables
- Mostly Operating at 2Hz, few sensors at 10Hz
- EPICS as an abstraction layer for all control systems? Integrating EPICS with LabVIEW applications?

Performance Evaluation Setup

- 1. Two experiment modes for one hour
 - Sensor Mode: Simulate reading incremental values from 300 sensors from cRIO OPC UA server and channeling them through EPICS.
 - b. Setpoint Mode: Simulate writing incremental values to 300 PVs in the cRIO OPC UA server through EPICS. Another EPICS client to push values to OPC UA through EPICS. (Figure 2.)
- 2. For each mode we run two experiments: 10Hz and 2Hz
- 3. We calculate loss by monitoring the number of values received by the EPICS client

	Performance Evaluation Results								
					Setpoint Mode Loss Rate (%)				
1	Update Rate	Sensor Mode Loss Rate (%)	1 [Update Rate	Output Record	Readback Record			
	2Hz	0%		2Hz	0%	0%			
	10Hz	0%		10Hz	0%	0.6%			

Table 2. Loss Rate for Sensor Mode Experiments

Table 2. Loss Rate for Setpoint Mode Experiments

Conclusion

- Data loss only happens on high update rate.
- OPC UA can be a good interface to integrate EPICS and NI LabVIEW hardware with no impact on performance for slow control systems.

KATRIN Slow Control System

- Heterogeneous System managed by different institutes and parties e.g. NI cRIO/cFieldPoint, Siemens S7
- ~10,000 Process Variables
- Mostly Operating at 2Hz, few sensors at 10Hz
- EPICS as an abstraction layer for all control systems? Integrating EPICS with LabVIEW applications?

Integrating EPICS with LabVIEW

Performance Evaluation Setup

- 1. Two experiment modes for one hour
 - a. Sensor Mode: Simulate reading incremental values from 300 sensors from cRIO OPC UA server and channeling them through EPICS.
 - b. Setpoint Mode: Simulate writing incremental values to 300 PVs in the cRIO OPC UA server through EPICS. Another EPICS client to push values to OPC UA through EPICS. (Figure 2.)
- 2. For each mode we run two experiments: 10Hz and 2Hz
- 3. We calculate loss by monitoring the number of values received by the EPICS client

Table 1. Expected number of values in an hour for 2Hz & 10Hz experiments

Figure 2. Setpoint Experiment Mode

Performance Evaluation Results

Update Rate	Sensor Mode Loss Rate (%)
2Hz	0%
10Hz	0%

	Setpoint Mode Loss Rate (%)			
Update Rate	Output Record	Readback Record		
2Hz	0%	0%		
10Hz	0%	0.6%		

 Table 2. Loss Rate for Sensor Mode Experiments

Table 2. Loss Rate for Setpoint Mode Experiments

Conclusion

- Data loss only happens on high update rate.
- OPC UA can be a good interface to integrate EPICS and NI LabVIEW hardware with no impact on performance for slow control systems.