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Abstract
LabVIEWTM software is often chosen for developing

small scale control systems, especially for novice software
developers. However, because of its ease of use, many func-
tional LabVIEWTM applications suffer from limits to exten-
sibility and scalability. Developing highly extensible and
scalable applications requires significant skill and time in-
vestment. To close this gap between new and experienced
developers we present an object-oriented application frame-
work that offloads complex architecture tasks from the de-
veloper. The framework provides native functionality for
data acquisition, logging, and publishing over HTTP and
WebSocket with extensibility for adding further capabilities.
The system is scalable and supports both single server ap-
plications and small to medium sized distributed systems.
By leveraging the application framework, developers can
produce robust applications that are easily integrated into a
unified architecture for simple and distributed systems. This
allows for decreased system development time, improved
onboarding for new developers, and simple framework ex-
tension for new capabilities.

INTRODUCTION
In contrast to large experimental physics programs, small

to medium size experiments and test-beds generally have
less resources in terms of manpower, funding, and schedule.
Developers are often faced with the task of standing up a
distributed control system from scratch under tight deadlines
with limited personnel. In these situations, it is imperative
to choose a programming language that allows for quick
hardware integration and prototyping.

Under these circumstances, NI LabVIEWTM software is
often chosen for several reasons. First, it has an extensive
hardware ecosystem with options for benchtop, distributed,
and embedded hardware systems [1]. Interfacing with these
systems from the LabVIEWTM development environment
is streamlined and there are offerings for systems across the
spectrum of determinism. Simple DAQs provide baseline
functionality for non-deterministic applications, and soft and
hard real-time situations are handled by RTOS and FPGA
applications, respectively.

LabVIEWTM software is also attractive due to its shallow
learning curve and low barrier to entry for those without
a classical programming background. It uses a graphical
programming style combined with a “dataflow” paradigm for
organizing functionals and variables and defining execution
order [2]. Many workflows for data acquisition, analysis,
and logging are built in, and examples and documentation
∗ davis287@llnl.gov

abound. It is simple for novice developers or even end users
to create a baseline DAQ system to collect experimental data.

The result is an attractive platform for developing small
scale experimental systems. In many cases, control system
developers need not get involved at all - scientists and opera-
tors can quickly develop the skills to work with LabVIEWTM

programming. However, this story becomes less clear when
moving from small scale systems to medium scale sys-
tems with multiple distributed Front-End Processors (FEPs).
Leveraging NI hardware remains an attractive prospect, as
it eliminates the need for custom RTOS machines or FPGA
boards to handle deterministic applications. However, the
very advantage of easy software development can quickly
become a burden instead.

Simple LabVIEWTM applications are singular in purpose
– they interface with a small number of devices, acquire
data, perhaps execute a sequence, and log data to disk. This
can be accomplished by a novice developer, or even an end
user, as previously mentioned. However, more often than
not, such simple systems suffer from a lack of scalability
and extensibility. Of course, a piece of software designed
to control a single experiment has no need for scaling or ex-
tension, provided that system requirements are well-defined
before the development begins (a tall assumption, but one
we take for granted here).

The disconnect arises when taking similar software de-
velopment practices and applying them to a larger scale,
distributed system. While developing LabVIEW code to
control a single system can be accomplished by those with
little to no previous software engineering background, de-
veloping a distributed, extensible, and scalable system for a
larger system requires more experience, skill, and rigor.

Often for a simple system, there is a single developer who
creates an application to run the experiment. But for systems
of increased complexity, multiple developers of varying skill
levels must work together to create a series of interconnected
applications across a number of FEPs. In such a situation, a
unified architecture must be developed to ensure scalability
across the system. Similarly, extensibility becomes key to
adding new capabilities over time as the system evolves, as
a larger scale system will likely be in operation for longer
than a small testbed.

Thus the ideal architecture for developing LabVIEWTM

applications for mid-scale distributed control systems must
be scalable for any number of devices and FEPs, extensible
for adding capabilities across the lifetime of a project (and
ideally to future projects as well), and – most importantly –
accessible to developers at all skill levels.

To accomplish these goals, we have developed an object-
oriented distributed architecture for LabVIEWTM applica-
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Figure 1: An example system architecture for a small project. Arrows represent communication over the LAN. Black arrows
represent Server Message Block (SMB) protocol (mapped network drives), blue arrows represent local (mouse/keyboard)
interaction, green arrows represent HTTP or Websocket connections, and red arrows represent device communication.

tions entitled Photon Science Controls (PSC). The architec-
ture leverages inheritance and polymorphism to provide an
extensible framework with discrete, encapsulated compo-
nents. It natively provides flexible inter-application com-
munication over HTTP and Websocket to support systems
distributed over a Local Area Network (LAN), with capabil-
ity to support other protocols as well.

Perhaps most importantly, it is designed to offload com-
mon software tasks from developers so that they can focus on
discrete functional blocks. Tasks such as intra-application
communication, logging, system health, and the aforemen-
tioned inter-application communication are pre-packaged
and separately source-controlled. This ensures that the ar-
chitecture remains accessible for novice and experienced
users alike, while guaranteeing that functionality remains
equivalent across all system applications.

SYSTEM ARCHITECTURE OVERVIEW
Systems using the PSC architecture are designed as peer-

to-peer systems composed of FEP applications and client
applications. FEP applications are designed to handle device
interfacing, sequencing, supervisory logic, and real-time
calculation. These are the applications that use the PSC
architecture. Client applications include GUIs, real-time
status verifiers, and data displays. FEP application peers
can communicate with any other FEP application on the
network. Client applications can also communicate with
any FEP application, but do not connect with each other.
Figure 2 shows a example representation of this network
architecture.

Combining FEP applications and client applications al-
lows for the development of a distributed control system with
user access available from any connected terminal. Figure

Figure 2: Peer to peer network architecture with FEP appli-
cations and client applications.

1 shows an example distributed system designed under this
paradigm. The example system has four FEP applications
distributed across three FEPs. Applications two through
four handle device communication, and application one runs
some supervisory application that requires data from the
other three. The client GUI applications are served up from
a central file server, which ensures that they are available
from any local machine on the LAN.

All communication between client applications and FEP
applications, and between FEP applications is done over TCP
- specifically using HTTP and Websocket. Users interact
with the FEP applications through the remote client GUIs,
which can send commands and receive data from the FEP
applications. FEP applications can manage multiple con-
nections from clients and peers, allowing for simultaneous
monitoring from multiple local workstations. This is espe-
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Figure 3: Sample FEP application with hierarchical architecture. Each Manager and Process is a self-encapsulated process
running asynchronously.

cially important to support system designers and operators
through the commissioning, qualification, and operational
lifetime of the system as UI and workstation needs change.

The flexibility of the PSC architecture allows for it to be
used on any target with a LabVIEW runtime. This includes
Windows machines for non-deterministic applications, and
NI hardware targets such as cDAQ and cRIO embedded
processors for RT applications. These hardware devices run
Linux RT as their RTOS, and cRIO targets also include an
FPGA layer for hard real time applications. This allows the
architecture to cover the full range of determinism needs for
the system without requiring rework or adaptation.

FEP APPLICATION ARCHITECTURE

Application Architecture Overview
FEP applications form the core of the distributed control

system and cover most of the functional requirements of the
project. They communicate with devices; acquire, process
and log data; broadcast and request data from other peers;
and handle communication with client applications to send
and receive data and commands from users.

The functions of a given FEP application are broken into
discrete chunks called Generic Messengers (GeMs). Each
GeM is a self-contained asynchronous process that handles
a defined subset of the FEP application functionality. GeMs
in an FEP application are launched in a manager-worker
hierarchy. There is a top-level Application Manager GeM,
one to many mid-level Process Manager GeMs, and one to
many Process GeMs. Process GeMs control the core be-
havior and provide the main functionality of the application.
Process Managers and the Application Manager allow for
data roll-up from the Process GeMs as well as high-level
application management functionality.

Figure 3 shows an example of this application hierarchy
with some typical GeMs. This particular application would
communicate with two devices, monitor the health of the
FEP (CPU usage, RAM, etc), manage communications with
external applications, and log device and application data
to disk and an external client like an industrial Historian.
Process managers and the Application manager would han-
dle high level application behavior - monitoring the health
of different processes, managing processes closing or being
instantiated, etc.

There is no defined limit to the number or type of GeMs
present in a single application. Different classes, devices,
protocols, and loggers can be supported to accomplish the
purposes of the application as long as they conform to the
structure of the GeM ancestor class.

Flexible Functionality Distribution
Intra-application communication between GeMs is a mi-

crocosm of the peer to peer inter-application communication
scheme of the distributed system. Each GeM is individually
addressable so that data can be passed around the applica-
tion as necessary. For example, the Dev1 CSV File Logger
in Fig. 3 would subscribe to data from the Dev1 Process
stream to log it to disk. Like the peer-to-peer relationship
between FEP applications at the system level, any GeM can
get data from or issue commands to any other GeM in the
FEP application.

This nested approach to communication allows for maxi-
mum flexibility in defining application and system organiza-
tion. Depending on system requirements, FEP applications
can be organized by functionality, device type, or logical
subsystem grouping. GeM processes that fulfill the system
requirements are then distributed across the FEP applications
to match these functional groups. System hardware archi-
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Figure 4: Redistributed architecture from Fig. 1. Note that the functionality of applications two and three has been moved
into GeMs in application one. Yellow arrows denote internal communication (queues). This architecture is functionally
identical but may provide different performance characteristics that would prefer its usage. Not pictured are the GeMs
handling the external communication.

tecture, performance requirements, and logical delineations
can all drive these decisions.

For example, Fig. 4 shows how the example system in Fig.
1 could be rearranged. We have consumed the functionality
of FEP applications two and three into FEP application one,
and instead used the internal data lines for the supervisor
rather than external (HTTP, Websocket) to get their data.
Note that FEP application four remains on a different FEP,
so FEP application one still uses external communication
for its data.

This reorganized system would perform the same tasks
as the architecture presented in Fig. 1, but may provide
performance benefits that would make it preferable. In short,
a PSC2 system architecture provides the capability to tune
the level of distribution to match physical and performance
needs at the macro “distributed system” level and the micro
“application GeM” level.

Class Hierarchy and GeM Functionality

Figure 5 shows a class diagram for the Generic Messenger
ancestor class. Note that most GeM classes are descendants
of the Process class, as that is where the core functionality
of an application is executed. However, Process Managers
and the Application Manager also inherit from the GeM
ancestor class, which means they inherit similar functionality
to Process classes.

The functionality provided by the GeM ancestor includes
five key items. The ancestor provides a common process
main that ensures these five items are all implemented iden-
tically across all descendant GeMs.

Data polling / creation Every GeM includes a method
to poll and create data at a predefined rate. For device process
classes, this would include the device status data. For other
GeMs, this provides an internal status. As an example, a
logger class would provide information on its logging speed,
how many items are left in the logging buffer, the current
file, etc. Data is generically typed in a key-value structure
for easy handling across GeMs and peer applications.

Command Handling Every GeM has a command han-
dler that allows it to receive messages from other GeMs
in the system. This is the method by which data is passed
throughout the application. A command message is usually
bundled with a response queue, which allows for a response
to be sent back upon command action completion.

Lossy and Non-Lossy Data Streams After the GeM
data is produced in the polling loop, it is piped into two data
streams. The first, a lossy stream, is a single element queue.
The element is overwritten upon each polling cycle, hence
the designation as lossy. This is what the command handler
can use to report the latest data sample upon request. It is
often used for discrete requests, like by a TCP process for
sending data to a GUI.

The second data stream is a non-lossy stream. Data is
pushed into a buffered queue so that each sample is captured.
This is the preffered method for passing data to loggers or
other processes that need a complete data history. GeMs
can subscribe to this data stream by sending a subscription
request over the command handler.

Thresholding and Alarming Particularly for device
process GeMs, it is important to monitor data values for
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Figure 5: Generic Messenger Class Hierarchy. Most available architecture GeMs are of the “Process” descendancy, as this
is where functionality is most heavily defined.

anomalies and take actions if they exceed pre-defined levels.
Every GeM has a built in threshold handler that allows for
definition of levels and actions to take based on named data
values. These thresholds can be numeric or boolean. Based
on the level of the data under review, UI warnings and alerts
or Machine Safety System (MSS) actions can be taken.

Internal Error Handling Occasionally GeMs will en-
counter an internal error and self-terminate. The error han-
dling built into all GeMs ensures that these errors are logged
to disk for review. This is essential for addressing issues that
occur during commissioning and operations.

GeM Lifeline and Application Startup
Each GeM in the system goes through a similar lifeline.

They are instantiated and initialized, then spun off to run
an asynchronous process main. They are then terminated
upon task completion or application end and run a cleanup
routine.

PSC uses a Factory style object creation scheme [3] upon
application startup. When a PSC application is loaded, an ap-
plication factory is created. This factory object (not a GeM)
loads a configuration file that defines the objects needed for
the application to run. It then loads the necessary classes
into memory and instantiates them.

The launch process at application startup is recursive in na-
ture, based on the application hierarchy. The factory creates
an application manager GeM, within which are a number
of process manager GeMs who each contain a number of
process GeMs. GeMs are then launched from the bottom of
the hierarchy to the top – processes are each spun off, then
the corresponding process managers, and then finally the
application manager. This ensures a consistent boot order
that is defined in the application configuration. A defined

boot order is important to ensure that GeMs that depend on
other GeMs are initiated in dependency order.

Not all GeMs are initiated at application startup. It is
entirely possible for GeMs to be initiated by events that occur
during application operation. As an example, a TCP Process
Manager (see Fig. 3) listens for external connections and
instantiates TCP processes to handle them during runtime.
These processes persist until the connection is closed or
timed out, and then self-terminate.

Data Recursion
All GeM data is wrapped up recursively through the appli-

cation hierarchy (Process -> Process Manager -> Application
Manager) (see Fig. 6) In other words, each Process Man-
ager’s data packet contains all the data packets of its worker
Processes, and the Application Manager’s data packet con-
tains all the data packets of its worker Process Managers.
This allows for an external client or peer to get all the data
from an application by making a single query to the top-level
Application Manager.

Addressing and External Communication
As previously mentioned, GeMs can communicate with

other GeMs in a specific FEP application, and FEP applica-
tions can communicate with other peers and client applica-
tions. Every FEP application in a distributed PSC2 system
has an IP address and associated TCP ports. Furthermore,
each GeM within an application is assigned a URL based
on the application hierarchy. This URL serves as an address
for both external and internal communication. URLs are
generated by the following pattern: IPaddress:port/Appli-
cationName/ProcessManager/Process.

As an illustrative example, 185.20.20.1:5437/SampleAp-
plication/DeviceManager/Device1 would refer to the De-
vice1 process of the Device Manager Process Manager on
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Figure 6: Data Recursion in FEP applications. The top-level application manager contains all the data from the GeMs in
the application.

the Sample Application hosted on 185.20.20.1. The port
5437 may be the port setup for HTTP, Websocket, or some
other protocol.

The same URLs are used as identifiers for the command
queues of each GeM in the application. GeM peers send
commands to others’ command queues by name. Thus, the
unique identifier URL for a GeM serves as a routing path
for both external and internal communication.

External communication is routed through a TCP Process
Manager GeM, which instantiates worker TCP Processes,
one for each connection. Figure 7 shows the dataflow for
connecting to an external application. The TCP Process Man-
ager maintains a listener on the specified TCP port. Upon
receiving a connection request, it instantiates and launches
a TCP Process GeM. This GeM establishes the TCP socket
connection with the external application. Messages are sent
from the external application to the TCP Process, which then
forwards them to other GeMs by URL. The TCP Process
GeM persists until the connection closes or times out, at
which point it self-terminates.

The TCP Process Manager can instantiate any number of
TCP Process GeMs to support multiple connections. These
TCP Process GeMs can be HTTP connections, Websocket
connections, or other TCP protocols. There is a single con-
nection for each external application, which ensures that
data is not corrupted by multiple writers/readers on a single
socket.

Application Configuration and User Sets
Configuration items in a PSC application exist across three

levels of accessibility - “hard-coded” (lowest accessibility),
“static,” and “configurable” (highest accessibility). Hard-
coded items are configuration items that cannot be modified
without rebuilding the application. These are protected by
source control and are collected in an Application Configura-

tion file. Static items can be modified without rebuilding the
application, but are only applied on startup. Configurable
items can be loaded and saved during runtime. Both static
and configurable items are collected in User Sets.

Application Configuration File Every GeM maintains
a list of configuration items that define its behavior. These
form the basis of the Application Configuration that defines
the GeMs included in a specific application build. The Ap-
plication Configuration is loaded upon application startup,
and is used by the Application Factory to instantiate all the
GeM objects of the application. It lists the participating
GeMs, and their configuration parameters that define their
behavior. These can include polling rates, timeouts, links to
other GeMs, etc. These values are considered hard-coded
because they define the behavior of the final application.
Because of this, application configuration files are protected
as source code, and require rebuild upon changing.

User Sets Device Process GeMs maintain a series of
separate configuration files known as User Sets. User Set
files allow operators to save and recall device states in order
to facilitate different modes of system operation. As with
application configuration items, each Device Process GeM
maintains a list of user set items. Each item in a user set list
is tagged as “startup only” or not. This tag is what separates
static and configurable items. Static items are only applied
when the application is restarted, so changes to such items
in a user set will not be applied immediately. Configurable
items, on the other hand, can be recalled at any time during
operations.

As an example, imagine a flow controller that is han-
dled by a Device Process GeM. Perhaps there are some
warning/alarm thresholds associated with the device that we
would like to have the flexibility to change without rebuild-
ing the application (i.e., they cannot be hard-coded in the
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Figure 7: External Communication Process. The TCP Process Manager listens on the specific port for an initial message.
Once the message is sent, the Process Manager instantiates a TCP Process to handle the socket connection. The TCP
Process persists until the connection is closed or times out. Commands are sent by the client or peer to the TCP Process
GeM, which forwards them to their destination based on URL.

application configuration). However, we do not want them
to change without review and management approval. These
would be an appropriate candidate for static (startup-only)
behavior. We may also have a setpoint for the flow controller
that needs to change based on what phase of an experiment
is currently running. This may be a good configurable item
- we can save one user set for each phase, and recall the
appropriate one at runtime.

User sets are organized by name, and can be saved and
loaded from client UI applications. This gives operators
flexibility in defining, modifying, and managing the user
sets that need to be applied for continuous operation. Table
1 summarizes the three types of configuration items.

Table 1: Configuration Item Summary

Type Associated File Accessibility
Hard-Coded Application Rebuild

Configuration Application

Static User Set Restart
(startup-only tag) Application

Configurable User Set On Demand

CONCLUSION
The use of the PSC architecture helps to bridge the gap

between small and large scale experimental systems by pro-
viding a scalable and extensible framework for rapid devel-
opment timelines. Encapsulating functionality into intercon-
nected Generic Messenger objects allows for unlimited flexi-
bility in defining the distribution of system requirements over
the system LAN. By leveraging inheritance and polymor-
phism, base functionality is preserved across all descendant

GeM classes, providing a simple workflow for developing
new features and capabilities.

By abstracting functionality into the classes that form
the architecture, developers can focus solely on developing
code that fulfills system requirements without having to deal
with high level processes like communication and logging.
Taken all together, the architecture provides an excellent
solution for medium scale distributed systems and projects
with funding, time, and personnel limitations.
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