Author: Goryl, P.P.
Paper Title Page
MOPV033 Web Client for Panic Alarms Management System 206
 
  • M. Nabywaniec, M. Gandor, P.P. Goryl, Ł. Żytniak
    S2Innovation, Kraków, Poland
 
  Alarms are one of the most important aspects of control systems. Each control system can face unexpected issues, which demand fast and precise resolution. As the control system starts to grow, it requires the involvement of more engineers to access the alarm’s list and focus on the most important ones. Our objective was to allow users to access the alarms fast, remotely and without special software. According to current trends in the IT community, creating a web application turned out to be a perfect solution. Our application is the extension and web equivalent to the current Panic GUI application. It allows constant remote access using just a web browser which is currently present on every machine including mobile phones and tablets. The access to the different functionalities can be restricted to the users provided just with appropriate roles. Alarms can be easily added and managed from the web browser as well as adding new data sources is possible. From each data source, an attribute can be extracted, and multiple attributes can be combined into composer being the base for further analysis or alarms creation.  
poster icon Poster MOPV033 [0.626 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV033  
About • Received ※ 09 October 2021       Revised ※ 25 October 2021       Accepted ※ 04 November 2021       Issue date ※ 06 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPV034 Migration of Tango Controls Source Code Repositories 209
 
  • M. Liszcz, M. Celary, P.P. Goryl, K. Kedron
    S2Innovation, Kraków, Poland
  • G. Abeillé
    SOLEIL, Gif-sur-Yvette, France
  • B. Bertrand
    MAX IV Laboratory, Lund University, Lund, Sweden
  • R. Bourtembourg, A. Götz
    ESRF, Grenoble, France
  • T. Braun
    byte physics e.K., Berlin, Germany
  • A.F. Joubert
    SARAO, Cape Town, South Africa
  • A. López Sánchez, C. Pascual-Izarra, S. Rubio-Manrique
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • L. Pivetta
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Funding: Tango Community
At the turn of 2020/2021, the Tango community faced the challenge of a massive migration of all Tango software repositories from GitHub to GitLab. The motivation has been a change in the pricing model of the Travis CI provider and the shutdown of the JFrog Bintray service used for artifact hosting. GitLab has been chosen as a FOSS-friendly platform for storing both the code and build artifacts and for providing CI/CD services. The migration process faced several challenges, both technical, like redesign and rewrite of CI pipelines, and non-technical, like coordination of actions impacting multiple interdependent repositories. This paper explains the strategies adopted for migration, the outcomes, and the impact on the Tango Controls collaboration.
 
poster icon Poster MOPV034 [0.181 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV034  
About • Received ※ 10 October 2021       Accepted ※ 04 November 2021       Issue date ※ 28 November 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBL03 Tango Controls RFCs 317
 
  • P.P. Goryl, M. Liszcz
    S2Innovation, Kraków, Poland
  • S. Blanch-Torné
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • R. Bourtembourg, A. Götz
    ESRF, Grenoble, France
  • V. Hardion
    MAX IV Laboratory, Lund University, Lund, Sweden
  • L. Pivetta
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  In 2019, the Tango Controls Collaboration decided to write down a formal specification of the existing Tango Controls protocol as Requests For Comments (RFC). The work resulted in a Markdown-formatted specification rendered in HTML and PDF on Readthedocs.io. The specification is already used as a reference during Tango Controls source code maintenance and for prototyping a new implementation. All collaborating institutes and several companies were involved in the work. In addition to providing the reference, the effort brought the Community more value: review and clarification of concepts and their implementation in the core libraries in C++, Java and Python. This paper summarizes the results, provides technical and organizational details about writing the RFCs for the existing protocol and presents the impact and benefits on future maintenance and development of Tango Controls.  
slides icon Slides TUBL03 [0.743 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUBL03  
About • Received ※ 10 October 2021       Revised ※ 20 October 2021       Accepted ※ 22 December 2021       Issue date ※ 02 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAR01 The Tango Controls Collaboration Status in 2021 544
 
  • A. Götz, R. Bourtembourg, D. Lacoste, N. Leclercq
    ESRF, Grenoble, France
  • G. Abeillé
    SOLEIL, Gif-sur-Yvette, France
  • B. Bertrand, V. Hardion
    MAX IV Laboratory, Lund University, Lund, Sweden
  • G. Brandl
    MLZ, Garching, Germany
  • T. Braun
    byte physics e.K., Berlin, Germany
  • P.P. Goryl, M. Liszcz
    S2Innovation, Kraków, Poland
  • A.F. Joubert, A.J. Venter
    SARAO, Cape Town, South Africa
  • C. Pascual-Izarra, S. Rubio-Manrique
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • L. Pivetta
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The Tango Controls collaboration has continued to grow since ICALEPCS 2019. Multiple new releases were made of the stable release V9. The new versions include support for new compiler versions, new features and bug fixes. The collaboration has adopted a sustainable approach to kernel development to cope with changes in the community. New projects have adopted Tango Controls while others have completed commissioning of challenging new facilities. This paper will present the status of the Tango-Controls collaboration since 2019 and how it is helping new and old sites to maintain a modern control system.  
slides icon Slides WEAR01 [3.240 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEAR01  
About • Received ※ 10 October 2021       Revised ※ 15 October 2021       Accepted ※ 23 December 2021       Issue date ※ 25 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)