
MIGRATION OF Tango CONTROLS SOURCE CODE REPOSITORIES
M. Liszcz, K. Kedron, P.P. Goryl, M. Celary, S2Innovation, Kraków, Poland

C. Pascual-Izarra, S.Rubio, A. Sánchez, ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
B. Bertrand, MAX IV Sweden, Lund, Sweden

R. Bourtembourg, A. Götz, ESRF, Grenoble, France
L. Pivetta, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy

G. Abeille, SOLEIL, Gif-sur-Yvette, France
A.F. Joubert, SARAO, Cape Town, South Africa

T. Braun, Byte Physics, Berlin, Germany

Abstract

At the turn of 2020/2021, the Tango community faced
the challenge of a massive migration of all Tango software
repositories from GitHub to GitLab. The motivation has
been a change in the pricing model of the Travis CI provider
and the shutdown of the JFrog Bintray service used for
artifact hosting. GitLab has been chosen as a FOSS-friendly
platform for storing both the code and build artifacts and
for providing CI/CD services. The migration process
faced several challenges, both technical, like redesign and
rewrite of CI pipelines, and non-technical, like coordination
of actions impacting multiple interdependent repositories.
This paper explains the strategies adopted for migration,
the outcomes, and the impact on the Tango Controls
collaboration.

INTRODUCTION

Tango Controls [1] is a free and open-source software
ecosystem for building distributed SCADA systems.
Nowadays Tango Controls consists not only of the
middleware libraries providing the core functionality but
also of many supporting applications, GUI toolkits, and
other utilities. Tango Controls is developed by numerous
contributors and members of the Tango community.

Maintaining such a large and complex project requires
best-in-class tools for planning, development, testing,
packaging, and version control. From 2016 till 2021
Tango Controls was using GitHub [2] for source code
management and various other services, including Travis CI
for continuous integration and JFrog Bintray for publishing
release artifacts. At the end of 2020, Travis CI announced the
shutdown of travis-ci.org [3], while travis-ci.com,
previously focused on commercial software, received a new
pricing model [4]. Soon after that, JFrog announced the
shutdown of Bintray service [5]. These events resulted in
a mass migration of Tango Controls software repositories
from GitHub, Travis CI, Bintray, and other previously used
service providers. The following sections describe the
migration strategy, the challenges faced during the process,
the outcomes of the migration, and the impact on the whole
Tango Controls collaboration.

MOTIVATION AND STRATEGIC
DECISIONS

When in 2015 the tango-controls project was planning
its migration out of SourceForge [6], both GitHub.com and
GitLab.com were considered as its destination. In favour of
GitLab was its licensing policy (GitLab maintains an Open
Source Community Edition while GitHub is proprietary
software), but GitHub was chosen because, it was then
reasoned, its larger popularity would increase the visibility
of Tango and facilitate the integration of third party services
such as Travis-CI. Over the years, however, GitLab increased
its user base considerably–in particular within the Tango
developers because of GitLab being installed on-premises
in many Tango Collaboration facilities. GitLab also greatly
improved its CI integration, making it much more attractive
than Travis CI (e.g. for its native support of Docker
containers). Meanwhile, in 2018 Microsoft acquired GitHub
–an event that already prompted many projects to move from
GitHub to GitLab– and launched its own CI service called
“GitHub Actions” [7] which also overcame many limitations
of Travis CI. The definitive trigger for considering the
migration of the tango-controls organization came at the
end of 2020 with the announcement that Travis CI would
start charging for CI time also to FOSS projects [4], which
directly affected the key repositories in tango-controls.

GitHub Actions or GitLab CI?
At this point, two alternatives were considered: either

move the CI of the Tango projects to GitHub Actions or
move the whole project to GitLab (other possibilities such as
using GitLab for the CI but keeping the project infrastructure
in GitHub were also considered but quickly discarded as
impractical).

Obviously, staying in GitHub and only adapting the CI
would entail less effort and, from the technical point of view,
the GitHub Actions service was considered to be on-par with
GitLab CI in terms of integration and features. However,
the proprietary nature of GitHub weighted against investing
effort on further integrating with it because of concerns about
potential vendor lock-in. In contrast, the fact that GitLab’s
Community Edition is Open Source and that the Tango
Collaboration members are already experienced in both
using and maintaining their own GitLab instances, eased
the concerns even about the eventuality that GitLab.com

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV034

Software Technology Evolution

MOPV034

209

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



could restrict its current allowance of free CI time and other
support for FOSS project [8].

When evaluating the extra effort required for migrating
to GitLab vs staying in GitHub, the project import feature
provided by GitLab was found to do an excellent job in
automatically transferring a whole GitHub project (including
its code, issues, wikis, etc). Therefore, it was concluded that
the main effort for the migration of a project lies in adapting
its CI, which would had to be done also if moving to GitHub
Actions, since continuing on Travis CI was not an option.

Regarding the disruption due to the change for the
individual users, it was considered to be heavily mitigated
by the fact that GitLab’s UI is very similar to that of Github,
that most of our users were already using GitLab instances
on-premises and that GitLab.com allows to log-in using
existing GitHub credentials.

Finally, it was also considered that by using the same
platform for the collaboration as that used locally in the
member facilities would be beneficial for reusing code,
configurations and skills, and it would facilitate transferring
projects to and from the local GitLab instances and sharing
knowledge within the collaboration.

MIGRATION PROCESS
The various projects hosted in the tango-controls

GitHub organization involve different subsets of the Tango
Community, with different release cycles and development
constraints. For this reason each project was allowed
to choose its own schedule for the actual migration, but
a “migration team” was constituted to coordinate the
migrations, support the project administrators and provide
both a set of tools and a common procedure for migrating.

The generic procedure for migrating a given project was
implemented as follows:

1. If the project uses Continuous integration, its Travis
and/or GitHub Actions .yml files are translated to an
equivalent gitlab-ci.yml file and the result is tested on
a temporary GitLab fork of the repository.

2. A list of participants to the project is compiled by
means of a custom-made python script [9] that uses
the GitHub REST API to scrape the account names
of those who contributed code or participated in the
discussions associated to Pull Requests and Issues of
this project.

3. A migration date is set by the project administrators and
the migration team. Then the participants identified in
the previous step are notified that, at least 24h before
the migration date, they should ensure that their GitHub
account can be associated to a GitLab account (in
practice this requires either that they login once into
GitLab using their GitHub credentials or that they
ensure that their GitHub account is set with a public
email address also used in their GitLab account).

4. On the decided date, the migration team performs the
actual migration as follows:

(a) A new empty branch called “moved-to-gitlab” is
created in the GitHub repository and set as its
default branch. A single README file is added
to it with a link to the new location in GitLab. The
project description is also changed to “Moved to
gitlab”.

(b) The GitHub project is “archived” (i.e., set as
read-only)

(c) The GitHub project is imported as a subproject in
the GitLab.com tango-controls namespace. This
is done using a dedicated “tango-controls-bot”
account and the standard import tool provided by
GitLab, which imports the whole git repository,
the issues, the pull requests (merge requests in
GitLab), the milestones, the releases the wiki,
etc.

(d) The moved-to-gitlab branch is removed from
the fresh new GitLab repository and the proper
default branch (e.g., “main” or “master” or
“develop”) is set instead.

(e) The Tango Community is notified about the
project migration via an email and a comment
in a dedicated issue.

5. After the migration, the project admins may need to
check and adjust the settings of the migrated project in
GitLab (e.g., the project members, protected branches,
etc.) and also manually adapt the documentation by
replacing references to GitHub.com by the equivalent
ones in GitLab.com.

C++ Core Library and Related Projects
The migration of the C++ core library repository [10]

to GitLab presented multiple challenges due to many
interactions with various external services. Travis CI [11]
was used for builds on Linux platforms and regression
testing, Appveyor [12] was used for builds on Microsoft
Windows, Coveralls [13] provided code coverage reports,
and Sonar Cloud [14] calculated code quality metrics.
Additionally, the ABI compatibility check was implemented
using GitHub Actions.

Linux CI The jobs on Travis CI were building and
testing the Tango Controls C++ core library on multiple
versions of the Debian operating system inside Docker
containers. The use of containers was dictated by the limited
choice of operating systems available in Travis CI [15].
The images of these containers were maintained by the
Tango Controls C++ core library developers and included
all the software required to build and test the library. Whilst
GitLab Runner provides a Docker Executor and is already
running all test jobs inside containers, it was decided to
keep existing Debian-based containers and run them using

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV034

MOPV034C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

210 Software Technology Evolution



Docker-in-Docker [16]. The reuse of the containers allowed
to reduce the effort required for the migration. The adoption
of Docker-in-Docker increased the complexity of the job
configuration but it could not be avoided as currently Docker
is anyway required to run the C++ core library tests.

Limited hardware resources of GitLab Build Cloud
runners imposed an additional challenge on the migration
process. The runners offer just one CPU core [17],
compared to two cores available in Travis CI virtual
environment [18]. This limitation resulted in failures
of some timing-dependent tests designed for multi-core
systems. Such tests required case-by-case analysis and minor
changes in the implementation.

Windows CI Windows-based jobs from Appveyor were
not migrated to GitLab CI/CD. Instead, Appveyor has been
configured as an external CI provider for GitLab. There are
plans to migrate these jobs to GitLab’s Windows Shared
Runners, but more work is still needed to enable this
migration [19].

External Services During migration, it was decided to
stop using external services for code coverage reporting and
code quality metrics. For both use cases, GitLab already
provides built-in features that integrate better with the rest
of the platform. Coveralls was replaced with a CI job that
produces a code coverage report in a standard Cobertura
XML format. This report is then processed by GitLab
and used for test coverage visualization in GitLab’s merge
request UI [20]. Sonar Cloud was replaced with a CI job
that runs clang-tidy [21] and produces a Code Quality report
artifact [22]. This allows GitLab to show any code quality
changes in the merge request UI.

Related Projects The C++ core library developers
also maintain a set of device servers and utilities
implemented in C++ like DataBase [23], Starter [24],
TangoTest [25], TangoAccessControl [26], tango-idl [27],
or tango_admin [28]. These projects do not use continuous
integration or any external services, thus their migration
followed the standard process of setting up appropriate
“moved to” branches and importing the projects in GitLab’s
web UI.

The Tango Source Distribution [29] is another project
closely related to the C++ core library. It used a Travis CI
job to build an install-able package with the C++ library,
essential device servers, and a set of Java-based tools. For the
purpose of the migration, a new CI job was created in GitLab.
As Ant tool [30] was used to drive the packaging process,
translating the job definition from Travis CI to GitLab CI/CD
did not require many changes. Additionally, the resulting
package is now stored as a job artifact.

Python Core Library
The Python core library [31] was using Travis CI service

for compilation and tests with multiple versions of Python,
including 2.x and 3.x releases. All test jobs were utilizing

Conda environments [32] to pull the required dependencies
and set up a matching version of Python. Since Conda is
also available as a Docker image suitable for use in GitLab
CI/CD the migration process was relatively straightforward
and required only translating the CI pipeline configuration
into a format accepted by GitLab. The project was not using
any other external services, which simplified the migration.
The packaging process was not impacted and the PyTango
package is still published to PyPi [33].

Java Core Library and Related Projects
Java core libraries, including JTango, use Apache

Maven [34] as a software project management tool to test,
build and validate the package. Maven is also used to
produce binary artifacts like JAR files. Testing and building
the software was automated using Travis CI service that
validated all the changes to the source code which was stored
in GitHub. The main challenge during migration to GitLab
was the rewrite of the CI pipeline into the format expected
by Gitlab CI/CD.

During the migration process, the JTango CI/CD pipeline
was completely redesigned to optimize the execution time
and to automatically deploy artifacts into a remote repository.
Also, the obsolete and duplicated CI jobs were removed.
With Travis CI, artifacts were deployed automatically
to Bintray [35] and manually into Maven Central [36]
repositories, as they are very popular in the Java/Maven
community. Because of the Bintray shutdown [5], a new
location was needed to store packages and artifacts. The
free Sonatype Nexus OSS repository hosting [37] was
selected for this purpose as it is a popular way to release
libraries to Maven Central. As a result, both snapshot and
release versions of the Tango Controls core Java libraries
are now automatically deployed to OSS and synchronized
with Maven Central.

Documentation
Tango Controls documentation is written in the

Sphinx-compliant [38] reStructuredText format [39]. The
documentation is published on the ReadTheDocs.io
service [40].

The sources were kept on GitHub along with other Tango
Controls projects. The project used Travis CI to test the
documentation build process and to assure its quality in
terms of warning-free builds, among others.

Moving the sources to GitLab was straightforward with
the use of prepared scripts. In addition to setting up
GitLab CI/CD (providing gitlab-ci.yml configuration file),
Sphinx configuration file (conf.py) has been updated. The
ReadTheDocs.io project was also reconfigured to reflect the
new repository location.

The new CI pipeline takes advantage of the features
provided by GitLab CI. For each merge request the
documentation, including proposed changes, is built and
the resulting HTML files are stored as CI job artifacts [41].
This gives the reviewer ability to check the visual quality of

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV034

Software Technology Evolution

MOPV034

211

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



the merge request directly in GitLab without doing a local
build of the documentation on the reviewer’s machine.

Other Projects
Other software projects related to the core have been

already migrated to GiLab or are in the process of migration
(Taurus [42], Sardana [43], fandango [44], panic [45],
HDB++ [46]). A developer has been assigned to the
migration task of each of these projects. Some of the already
migrated projects (fandango, panic) are also in transition
from Python 2 to Python 3. The work done on GitLab
migration allowed to implement CI/CD on these projects,
taking advantage of the Docker images and jobs already
configured. Migration of HDB++ Archiving project and the
development of Docker images for archiving CI are assigned
and expected to be completed in the next year.

IMPACT ON PACKAGING
Debian

Using GitLab enables a direct reuse of the CI pipelines
from the official Debian packaging infrastructure [47] which
is also based on Gitlab-CI.

RPM
The Tango RPMs used to be built internally by MAX

IV. With the migration to GitLab, we took the opportunity
to move the Tango SPEC file repository [48] to the
tango-controls group on GitLab. RPMs are now built using
Copr [49], a build system and infrastructure provided by
Fedora. This could have been done on GitHub as well, but
using a gitlab-ci pipeline to trigger and test the Copr build
made the task easier, as MAX IV has a lot of experience
with their internal GitLab server. RPMs are built using the
Tango Source Distribution release [29]. This is a single url to
change in the SPEC file when next release will be available.

Conda
Conda [32] packages are built using an archive of the

repository. The repository url is specified in the source field
as well as in the metadata of the recipe. The impact of the
migration to GitLab is thus minimal. Some packages, like
tango-database, were created after the migration and already
use GitLab as source. Some, like cpptango, were created
before. They will be updated when a new version is released.

Bintray
Java core libraries were using Bintray [35] to store binaries

and other artifacts like POM files. Publishing to Bintray
was the main way of distributing JTango to downstream
projects. After Bintray shutdown [5] and repositories
migration a GitLab package registry was created for the
JTango project [50]. This registry allows for storing JAR files
for each JTango release. Additionally, integration of GitLab
CI/CD with Maven allowed to refactor the build process
and to distribute the binaries directly to OSS Sonatype

Nexus [37] which is currently the official remote registry for
distributing the JTango Java artifacts.

CONCLUSION
The migration process presented maintainers and

developers with many challenges. A common, well-defined
strategy and a detailed migration plan allowed for carrying
out all necessary activities on time and consistently across
multiple projects. A dedicated migration team provided
support for administrators of various repositories and
coordinated all the efforts related to the migration. Move
from Travis CI to GitLab CI/CD caused some technical
difficulties but in the end, it allowed for better integration
with the rest of the GitLab platform.

The migration of Tango Controls software repositories
to GitLab is still a work in progress. At the time of
writing 49 out of 67 repositories in the tango-controls
organization were already migrated. Critical projects like
core software libraries are on GitLab since early 2021
and all development including issue handling, code review
and continuous integration is performed there. Remaining
projects will be gradually migrated over time or left on
GitHub if there is no clear benefit in moving them.

ACKNOWLEDGEMENTS
The authors acknowledge the support of the Tango

Controls Collaboration for funding a number of the
developments described here as well as the Tango Controls
Community for bug reports, fixes, suggestions for new
features and contributions.

REFERENCES
[1] https://www.tango-controls.org

[2] https://github.com/tango-controls

[3] https://mailchi.mp/3d439eeb1098/travis-ciorg-
is-moving-to-travis-cicom

[4] https://blog.travis-ci.com/2020-11-02-travis
-ci-new-billing

[5] https://jfrog.com/blog/
into-the-sunset-bintray

[6] https://sourceforge.net/projects/tango-cs/

[7] https://github.com/features/actions

[8] https://about.gitlab.com/solutions/open-
source/

[9] https://github.com/tango-controls/gitlab-
migration-tools

[10] https://gitlab.com/tango-controls/cppTango

[11] https://travis-ci.org/github/tango-controls/
cppTango

[12] https://travis-ci.org/github/tango-controls/
cppTango

[13] https://coveralls.io/github/tango-controls/
cppTango

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV034

MOPV034C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

212 Software Technology Evolution



[14] https://sonarcloud.io/dashboard?id=org.tango
-controls:cpp-tango:tango-9-lts

[15] https://docs.travis-ci.com/user/reference/
overview/#which-one-do-i-use

[16] https://hub.docker.com/_/docker
[17] https://docs.gitlab.com/ee/ci/runners/build_

cloud/linux_build_cloud.html

[18] https://docs.travis-ci.com/user/reference/
overview/#virtualisation-environment-vs-

operating-system

[19] https://gitlab.com/tango-controls/cppTango/-/
issues/731

[20] https://docs.gitlab.com/ee/user/project/
merge_requests/test_coverage_visualization.

html

[21] https://clang.llvm.org/extra/clang-tidy/
[22] https://docs.gitlab.com/ee/user/project/

merge_requests/code_quality.html#

implementing-a-custom-tool

[23] https://gitlab.com/tango-controls/
TangoDatabase

[24] https://gitlab.com/tango-controls/starter
[25] https://gitlab.com/tango-controls/TangoTest
[26] https://gitlab.com/tango-controls/

TangoAccessControl

[27] https://gitlab.com/tango-controls/tango-idl
[28] https://gitlab.com/tango-controls/tango_admin
[29] https://gitlab.com/tango-controls/

TangoSourceDistribution

[30] https://ant.apache.org/

[31] https://gitlab.com/tango-controls/pytango

[32] https://docs.conda.io

[33] https://pypi.org/project/pytango/

[34] https://maven.apache.org/

[35] https://bintray.com/

[36] https://search.maven.org/

[37] https://oss.sonatype.org/

[38] https://www.sphinx-doc.org/

[39] https://gitlab.com/tango-controls/tango-doc

[40] https://tango-controls.readthedocs.io/en/
latest/

[41] https://docs.gitlab.com/ee/ci/pipelines/job_
artifacts.html

[42] https://gitlab.com/taurus-org/taurus

[43] https://github.com/sardana-org/sardana

[44] https://gitlab.com/tango-controls/fandango

[45] https://github.com/tango-controls/PANIC

[46] https://github.com/tango-controls-hdbpp

[47] https://salsa.debian.org/salsa-ci-team/
pipeline

[48] https://gitlab.com/tango-controls/tango-spec

[49] https://copr.fedorainfracloud.org/coprs/g/
tango-controls/tango/

[50] https://gitlab.com/tango-controls/JTango/-/
packages/1959228

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV034

Software Technology Evolution

MOPV034

213

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


