
THE TANGO CONTROLS COLLABORATION STATUS IN 2021
A. Götz, R. Bourtembourg, D. Lacoste, N.Leclercq, ESRF, Grenoble, France

S.Rubio, C. Pascual-Izarra, ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
V. Hardion, B.Bertrand, MAXIV Sweden, Lund, Sweden

L. Pivetta, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
P.P. Goryl, M. Liszcz, S2Innovation, Kraków, Poland

A.F. Joubert, J.Venter, SARAO, Cape Town, South Africa
G. Abeille, SOLEIL, Gif-sur-Yvette, France
T. Braun, Byte Physics, Berlin, Germany

G. Brandl, Forschungszentrum Jülich, Garching, Germany

Abstract
The Tango Controls collaboration has continued to grow

since ICALEPCS 2019. Multiple new releases were made
of the stable release V9. The new versions include support
for new compiler versions, new features and bug fixes. The
collaboration has adopted a sustainable approach to kernel
development to cope with changes in the community. New
projects have adopted Tango Controls while others have
completed commissioning of challenging new facilities.
This paper will present the status of the Tango-Controls
collaboration since 2019 and how it is helping new and old
sites to maintain a modern control system.

INTRODUCTION
Tango Controls is a software toolkit for building object

oriented control systems. It has been adopted at a large
number of sites around the world either as the main toolkit
for their control system or for a sub-system or commercially
acquired systems. A growing number of commercial
products and control systems are now based on Tango
Controls. A few commercial companies offer paying support
for anyone needing help in integrating Tango Controls into
their system.

The main objectives of kernel developments for Tango
Controls since 2017 has been to consolidate the continuous
integration for all major platforms, maintain the Long Term
Support version V9, i.e. bug fixing and add features which
are strongly needed by the community but do not break
compatibility with V9 release, improve the web development
platform, continue to improve the documentation and
website, and prepare the next major release of Tango (V10).
This paper summarises these developments.

COLLABORATION
The Tango Controls Collaboration is in charge of ensuring

the sustainability of Tango Controls. It currently has 11
members who contribute financially and in-kind to the
maintenance of Tango Controls as a modern reliable controls
toolkit for small and large facilities. In addition to the
collaboration members a number of individuals and some
companies contribute new developments to the ecosystem
e.g. see section Rust binding below.

The Tango Controls Collaboration contract has been in
operation since 5 years. The initial collaboration contract
ended in 2020. All partners agreed the collaboration was
fulfilling an essential role for the sustainability of Tango
and should be continued for another 5 years. All partners
signed the new contract running from 2021 to 2025. The
new contract maintains the objectives and missions of the
previous one i.e. all members provide the same financial
contribution to maintaining the kernel, while some partners
contribute in-kind resources too. The ESRF is in charge
of sub-contacting tasks on behalf of the other members. A
major change in sub-contracting took place in 2021 with
a Call For Tender for sub-contractors who could provide
services to Tango for the next 3 to 5 years. After a selection
process 4 companies were chosen based on their competence
and knowledge of the Tango kernel. Setting up contracts
for 3-5 years will help ensure the sustainability of Tango
controls. The new collaboration contract foresees a rotation
of the role of coordinator amongst the members every year.

New Projects

New projects continue to adopt Tango as their controls
toolkit. Some examples of major new projects are the
LOFAR 2.0 project (see [1]), the JINR 200 MeV LINAC
(see [2]), the PEPC plasma electrode Pockels cell (see [3])
to mention a few. Some of the large projects which are
based on Tango have completed successfully, for example
the ESRF-EBS, the first 4th generation storage ring (see [4]
and [5]). Other large projects like the SKA are ramping
up to full speed and are already well advanced in their
developments and will soon start construction (see [6]). A
number of other 4th generation storage rings which will be
based on Tango (e.g. ELETTRA, SOLEIL and CELLS) are
in the planning phase. The above projects are only a small
subset of projects using Tango: due to the way open source
code can be downloaded by everyone without registering
not all projects are declared or known to the community.
They illustrate how vibrant the Tango Controls community
is and the strong need to sustain and continue developing
the Tango Controls toolkit for the coming decades.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEAR01

WEAR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

544 Human Aspects, Collaborations, Management

KERNEL DEVELOPMENT
Migrating from GitHub to GitLab

The tango-controls GitHub organization [7] had been
used since 2016 for hosting the various tango source code
repositories as well as for managing issues and code review.
The Continuous Integration was based on Travis-CI [8],
also integrated in GitHub. A change in the terms of use
of Travis-CI in December 2020 prompted the migration
of the whole tango-controls organization to the GitLab
platform. GitLab was found better suited to the open source
nature of the Tango collaboration, offered more support
for Continuous Integration and the fact that its Open Source
version can be installed on-premises (as it is the case in many
of the facilities involved in the Tango Collaboration). GitLab
therefore offers better protection against potential vendor
lock-in. The GitLab.com organisation graciously accepted
to host the tango-controls project with gold status free of
charge. Gold status allows up to 100 seats for developers of
which currently 62 are in use.

The migration is being done on a per-project basis (at
the moment of writing, 49 have been migrated, out of 67
originally in the tango-controls organization), and the main
code review, continuous integration and issue handling is
already done in GitLab.com. In terms of implementation, the
migration has been relatively simple thanks to the automated
import of GitHub projects provided by GitLab. The only
aspects that needed some manual intervention were adapting
the CI configuration from Travis-CI to GitLab-CI and the
coordination to ensure that the contributors had linked
their GitLab and GitHub accounts in order to preserve the
cross-references and contribution statistics.

See paper [9] for more details.

C++ Core Library
Part of the TANGO C++ core library development is

being subcontracted to Byte Physics and S2Innovation for
the TANGO collaboration. The Tango C++ Kernel library
cppTango [10] is actively maintained with the excellent
expert help of these companies.

Since the last ICALEPCS conference, cppTango 9.3.4 [11]
has been released and a new Tango Source Distribution
Release [12] has been prepared. This new cppTango release
provides several bug fixes for race conditions, memory leaks,
issues related to events, compilation warnings and better
support of recent cppzmq versions [13]. It is fully ABI and
API compatible with the previous 9.3.x cppTango releases.
This version still does not require C++11 support from the
compiler, allowing it to be built on older platforms, including
Debian 7.

Since the introduction of the TANGO 9 Long Term
Support, the Tango C++ Kernel developers are working
on improving the code quality by refactoring the source
code to make it easier to maintain. This work is being
done in the cppTango repository main branch from which
cppTango 9.4 will be released at some point. cppTango
9.4 will not be binary compatible with cppTango 9.3.x but

will still be API compatible with cppTango 9.3.x versions.
The main development branch requires at least C++14
and will be compatible with C++17 and C++20 . This
branch is being automatically compiled and tested with
GitLab CI on Ubuntu 20.04 LTS, Debian 9, 10, and 11
platforms as well as using the latest releases of GCC and
Clang. The migration to GitLab was an opportunity to
replace SonarCloud services with CI jobs using Clang Static
Analyzer [14] and clang-tidy [15] to detect code quality
issues. Also a new CI job that generates a code coverage
report was added. Additionally, some steps were taken to
improve the memory safety and the overall stability of the
C++ core library. As a result a set of sanitizer CI jobs,
including address [16], undefined behavior [17] and thread
sanitizers [18], was enabled for the main branch.

Python Core Library
Python is still enjoying good popularity in the Tango

Controls community. This is largely due to the excellent
PyTango binding for Tango to C++. It provides a high level
python friendly API which makes developing servers and
clients extremely easy.

PyTango 9.3.3 has been released in December 2020 [19].
This marks only the second release since the previous review
at ICALEPCS 2019 [20], with the 9.3.4 release is expected
this year. Fourteen contributors have been working on the
project producing more than 150 commits, in total. PyTango
9.3.3 supports the releases 9.3.x of the Tango C++ library -
the minor versions are kept in sync. No major updates were
required in this period, so it was largely maintenance.

PyTango fully supports both Python 2 and Python 3
language versions, although Python 2 is nowadays officially
obsolete and its usage have been already discouraged for new
developments. Having compatibility with both language
versions has helped during the transition to Python 3 of
legacy python-based projects. The biggest frameworks using
PyTango, like Taurus and Sardana, are already running in
production using Python 3. Older Python tools and device
servers (fandango, pytangoarchiving, panic) are currently in
the process of migration using GitLab CI/CD for validating
the migrated code. Unfortunately, the slow pace at which
institutes are able to transition all their code to python 3
means that PyTango needs to maintain Python 2 supports
for some years still.

The long running port [20] of the C++ extension code
from Boost [21] to pybind11 [22] has not progressed
significantly. There were few resources to allocate to this
work. As there is no major risk of Boost’s Python support
becoming obsolete, the Tango Steering Committee has
decided to pause this effort.

Future work includes making PyTango available as a
binary wheel for Linux. This will significantly simplify
installation for users.

Java Core Library
Java core library (aka JTango), which is 100% Java, relies

on Jacorb [23] and JeroMQ [24], is now built upon Java 8

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEAR01

Human Aspects, Collaborations, Management

WEAR01

545

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

and Java 11. The latest developments have focused on its
quality; by fixing bugs, replacing deprecated Java code with
Java 8 code, and adding automatic unit and integration tests.
JTango artifacts were deployed automatically to Bintray [25]
and manually on Maven Central [26] repositories. Since
Bintray has announced its shutdown [27] and we were in
the process of migrating to GitLab, the CI/CD pipeline were
completely refurbished, to optimise its execution time and to
automatically deploy artifacts to Maven Central repository
(see details in paper [9] at this conference).

POGO
Pogo is the Tango code generator for device servers. It

allows users to define a Tango class model through its
graphical user interface and save it in an .xmi file. Starting
from this Tango class model, Pogo is able to generate a
device server skeleton in C++, Java or Python and the
relevant HTML documentation. The code generation part is
based on EMF (Eclipse Model Framework) associated with
Xtext and Xtend classes [28]. Pogo source code is available
on GitLab [29], and binary distribution is maintained on
maven central [30].

In the past years Pogo has continued to be improved.
Python support greatly evolved, two flavors of python
device servers can be generated. With the introduction of
PythonHL, device servers code is now more concise, more
readable, easier to maintain, and faster to develop.

Latest developments focus on improving Pogo for
automation. Current development workflows rely more and
more on CI/CD and Pogo needs to integrate and keep up to
date with the latest strategies. This has lead to:

• A ready to use docker image is now available. It will
speeds up deployment strategy and can be used for
automatic testing.

• Improved cmake integration. Modern cmake is the de
facto standard for building C++ projects, it simplifies
building and managing dependencies.

PACKAGING
RPM

Tango RPM packages used to be built internally by MAX
IV and provided to the community via the MAX IV’s
repository [31]. The Tango SPEC file repository [32] has
been moved to the tango-controls group on GitLab. Building
is now performed using Copr [33], a build system and
infrastructure provided by Fedora. Packages are produced for
CentOS 7, CentOS 8, Fedora 32 and 33. The latest version
of Tango can be installed on those distributions directly from
the Copr repository. RPMs are still available from the MAX
IV’s repository as well.

Conda
Conda [34] is an open-source solution for dependency

and environment management for any language. It is
cross-platform and runs on Windows, macOS and Linux.
Some packages (pytango, itango, tango-test) were already

Figure 1: Example of a web interface developed with Taranta
- display of status of MAXIV magnets.

available using the tango-controls conda channel [35]. Some
effort were made during this year to publish those packages
and add new ones to conda-forge [36]. conda-forge is a
community-led collection of recipes, build infrastructure
and distributions for the conda package manager. It is very
active and has become the de facto channel when using
conda. Using conda-forge has several advantages:

• existing conda-forge infrastructure makes it easy to
build on all supported platforms

• it ensures compatibility with conda-forge packages by
using the same build environment and baseline software
versions defined in conda-forge-pinning [37]

• makes it easier for people to discover tango packages
The current Tango packages available on conda-forge

are: tango-idl, cpptango, tango-database, tango-admin,
tango-test, pytango and itango. This move was also
beneficial to the wider Tango community allowing software
like Sardana, which depends on pytango, to be available on
conda-forge. Only Linux is currently supported but work for
publishing Windows packages is planned.

WEB TOOLKIT
During the last 2 years the pandemic situation has

demonstrated the importance of using web technology in
the Tango Control System. There are currently mainstream
2 solutions maintained by the community members, Taranta
[38] and Waltz. Taranta (shown in Fig. 1) is now an
official tool of the Tango ecosystem and has moved to the
tango-control GitLab repository. Following the example
of the Tango REST API which has a formal specification
(see [39]), a similar project is planned for the specification
of the GraphQL Tango gateway in order to allow different
back-end implementations (see [40] for example) to connect
to multiple front-end applications using GraphQL.

New initiatives have chosen the ubiquitous web browser
for their User Interface (UI) like the Solaris Synchrotron [41]
who developed the interlock and machine status UI with the
Vue.js [42] framework on top of TangoGQL [43].

In the meantime S2Innovation has developed IC@MS a
new web UI for the standard Tango Alarm system (see [44]).

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEAR01

WEAR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

546 Human Aspects, Collaborations, Management

use t a n g o _ c l i e n t : : ∗ ;

l e t mut dev = DeviceProxy : : new (" t ango : / / l o c a l h o s t : 1 0 0 0 0 / sy s / t g _ t e s t / 1 ") ? ;
l e t i n s t r = CommandData : : f r o m _ s t r (" Th i s i s a minimal Tango t e s t c l i e n t . ") ;
l e t a r g o u t = dev . command_inout (" DevS t r i ng " , i n s t r) ? ;
p r i n t l n ! (" Command exec r e s u l t : {} " , a r g o u t . i n t o _ s t r i n g () ?) ;

Figure 2: Tango Rust binding example code.

This is an example how the traditional Tango tools are getting
a lifting with modern technology.

BINDINGS
Rust Binding

Rust [45] is a fairly new systems programming language.
Because it puts a focus on efficiency while ensuring memory
and thread safety at compile time, it has the potential
to be used, also in the scientific sector, where code is
currently being written both in C/C++ and Python, trying to
provide the speed of the former together with the usability
of the latter. [46] The Tango Rust binding [47] is a Rust
library (“crate”) that provides Rust code with client access
to Tango devices, wrapping the C binding. So far, we
have implemented a DeviceProxy API up to Tango 8
and rudimentary a Database interface. Figure 2 shows
a minimal code example calling a method on a TangoTest
server. The library is available on Rust’s central package
server crates.io [48] and requires an installation of the C++
libtango to be present on the system to build against, as well
as a C compiler to compile the bundled C binding. It is
currently only tested on Linux systems.

TUI
A small text based command line utility have been

developed to explore running Tango devices. Devices
are presented in a tree structure, from which they can be
traversed and selected (see screenshot in Fig. 3). Once a
device is selected, their attributes and commands can be
seen.

The tool is written in Rust making use of the Rust bindings.
The Rust bindings have some limitations that may cause
issues when using the tool e.g. enum types are currently
not supported. For more details on the tool including its
limitations, installation instructions etc. see the project
GitHub page [49].

COMMUNITY WORKSHOPS
The 35th Tango Community Meeting was held on

September 14 and 15 2021. Despite the pandemic and the
remote nature of this event, +100 people registered and +25
talks has been given. The traditional session dedicated to
Projects Status allowed some major Tango-based projects
to report on their progress. Among them, were SKAO,
the world’s largest radio telescope under construction
and the ESRF-EBS, the first-of-a-kind fourth-generation

Figure 3: TUI - text based generic client written in Rust.

high-energy synchrotron. The technical sessions related
to the Tango ecosystem provided the attendees with latest
news of the kernels, the tools and the services around Tango.
PyTango - the Python binding based on the C++ kernel -
remains the most popular platform for both server and clients
development, especially for newcomers. The trend towards
the usage of web-based solutions for controls systems GUIs
continues, re-enforced by the need for remote controls during
the COVID-19 pandemic. The Tango Community Meeting
was also an good opportunity to introduce the subcontractors
who were selected during the Call for Tender managed by
the ESRF.

In addition to regular Tango Kernel Meetings, Tango
Kernel Training Sessions and the yearly Tango Community
Meeting, the HDB++ Archiving collaboration meetings are
now scheduled every two months to boost the collaboration
between institutes. These regular follow-ups of the project
have enabled the continuous improvement of the main
library, the testing and evaluation of the HDB++ core
libraries over multiple database engines (PostgreSQL,
MySQL, MariaDB, TimeScaleDb, ...) [50] as well as the
development of a common AbstractReader class for data
extraction.

TANGO V10
Tango V10 is the code name of the next long term version

of Tango which should bring a change in the communication
protocol. Since the backward compatibility is one of the
main attractions for Tango, the community has decided to
collectively understand the consequence of this major change.
The first step was to define what is the essence of Tango in
the form of RFCs.

The Tango Request For Comment RFC project [51]
specifies the data model of Tango, the expected behaviour
of the Tango elements and the communication between 2

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEAR01

Human Aspects, Collaborations, Management

WEAR01

547

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

components, as it is today with version 9. The project of
writing these specifications has involved all representatives
of the Tango consortium in such a way that the knowledge
is built collectively. The draft of the specifications is
almost complete before being compared to the existing
implementation. At the current state, it covers the essentials
of the Tango Model with 12 specifications.

The main communication protocol is the most complex
to specify as a large part of it is given by the CORBA
implementation. A careful review of the cppTango library
allows extracting the main principle, although separate the
abstraction from the implementation is a difficult challenge.

The RFCs are published on ReadTheDoc (see [52]).
These documents have status draft.

The final work in progress concerns RFC-10/The
Request-Reply Protocol. The RFC-13/Publisher-Subscriber
protocol implementation with ZMQ is waiting for review.
Three other RFCs are planned to be written if needed.

The Tango Community plans to organise a workshop for
the final edition of the RFCs and plan the next steps.

The Community will follow COSS and use the RFCs as a
base for building a prototype of Tango V10. This will verify
the specification for completeness and any ambiguity. When
a new version of Tango Controls is ready, the documents
will be marked as stable [53].

TRACING VIA LOGS
The SKA project developed a Python library [54] that

generates logs with tracing information. A log entry is
created upon the entry and exit of the context manager.

The main items in the log messages are:

transaction ID Tango device command arguments are
generally type string (JSON). The JSON may include
a common transaction ID that is passed along as part
of the arguments. By searching for this ID in the logs,
the execution path can be traced between devices.

Enter|Exit name Whether this is the start or end of the
context, and an arbitrary name for the log pair.

marker A random string used to match “Enter” and “Exit”
log entries.

For more details see paper [55]

CONCLUSION
The Tango Controls Collaboration has again proved

to essential in ensuring the continued maintenance and
development of the Tango kernel for the coming years and
decades thanks to securing high quality sub-contractors on
multi-annual contracts. The high quality of the in-kind
contributions continue to contribute to the successful
development of Tango Controls. Major new projects
are based on Tango which puts a strong requirement on
sustainability for the coming decades. A new binding is
now available for Rust. Rust is a promising language for the
future which addresses the problems of memory leaks which

traditional languages like C++, C and Python suffer from.
The web developments have been pushed ahead with the
wide-spread adoption of the Tango GraphQL protocol. The
next step will be to fix the specification of Tango GraphQL
to ensure compatibility between multiple implementations.
The collaboration is setup for the next 5 years and is open to
new members who rely on Tango or plan to use Tango for
their facilities and products.

ACKNOWLEDGEMENTS
The authors acknowledge the support of the Tango

Controls Collaboration for funding a number of the
developments described here as well as the Tango Controls
Community for bug reports, fixes, suggestions for new
features and contributions.

REFERENCES
[1] T. Juerges, J. Mol, T. Snijder “LOFAR2.0: Station Control

Upgrade”, presented at the 18th International Conference on
Accelerator and Large Experimental Physics Control Systems
(ICALEPCS 2021), Shanghai, China, October 2021, paper
MOAR03, this conference.

[2] A. Trifonov, M. Gostkin, V. Kobets, M. Nozdrin,
A. Zhemchugov, P. Zhuravlyov “The Control System of
the Linac-200 Electron Accelerator at JINR”, presented
at the 18th International Conference on Accelerator and
Large Experimental Physics Control Systems (ICALEPCS
2021), Shanghai, China, October 2021, paper TUAR03, this
conference.

[3] L. Li, J. Luo, Z. Ni “Fast Creation of Control and
Monitor Graphical User Interface for Pepc of Laser Fusion
Facility Based on Icsff”, presented at the 18th International
Conference on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS 2021), Shanghai, China,
October 2021, paper THPV007, this conference.

[4] S.M. White et al., “Commissioning and Restart of
ESRF-EBS”, in Proc. IPAC’21, Campinas, SP, Brazil, May
2021, pp. 1–6. doi:10.18429/JACoW-IPAC2021-MOXA01

[5] https://indico.cells.es/event/619/
contributions/1480/attachments/1034/1691/
ESRF-EBS-Status-Tango-Community-Meeting-
Sep.2021.pptx

[6] J. Santander-Vela, M. Bartolini, M. Miccolis, N. Rees
“From SKA to SKAO: Early Progress in the SKAO
Construction”, presented at the 18th International Conference
on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS 2021), Shanghai, China, October 2021,
paper MOAL03, this conference.

[7] https://github.com/tango-controls

[8] https://travis-ci.org

[9] M. Liszcz et al “Migration of Tango Controls Source Code
Repositories”, presented at the 18th International Conference
on Accelerator and Large Experimental Physics Control
Systems (ICALEPCS 2021), Shanghai, China, October 2021,
paper MOPV034, this conference.

[10] https://github.com/tango-controls/cppTango

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEAR01

WEAR01C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

548 Human Aspects, Collaborations, Management

[11] https://github.com/tango-controls/cppTango/
releases/tag/9.3.4

[12] https://github.com/tango-controls/
TangoSourceDistribution/releases/tag/9.3.4

[13] https://gitlab.com/tango-controls/cppTango/-
/blob/9.3.4/CHANGELOG.md

[14] https://clang.llvm.org/docs/
ClangStaticAnalyzer.html

[15] https://clang.llvm.org/extra/clang-tidy
[16] https://clang.llvm.org/docs/AddressSanitizer.

html

[17] https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html

[18] https://clang.llvm.org/docs/ThreadSanitizer.
html

[19] https://gitlab.com/tango-controls/pytango/-
/releases/v9.3.3

[20] A. Götz, G. Abeillé, M. Bartolini, R. Bourtembourg, T.
Braun, J.M. Chaize, et al., “State of the Tango Controls
Kernel Development in 2019”, in Proc. ICALEPCS’19, New
York, NY, USA, Oct. 2019, pp. 1234–1239. doi:10.18429/
JACoW-ICALEPCS2019-WEPHA058

[21] https://www.boost.org/doc/libs/1_76_0/libs/
python/doc/html/index.html

[22] https://github.com/pybind/pybind11
[23] https://www.jacorb.org/.
[24] https://github.com/zeromq/jeromq
[25] https://bintray.com/.
[26] https://search.maven.org/artifact/org.tango-

controls/JTangoServer

[27] https://jfrog.com/blog/into-the-sunset-
bintray-jcenter-gocenter-and-chartcenter/.

[28] https://tango-controls.readthedocs.io/
en/latest/tools-and-extensions/built-
in/pogo/index.html

[29] https://gitlab.com/tango-controls/pogo
[30] https://mvnrepository.com/artifact/org.tango.

tools.pogo.gui/Pogo

[31] http://pubrepo.maxiv.lu.se/rpm/el7/x86_64/.
[32] https://gitlab.com/tango-controls/tango-spec
[33] https://copr.fedorainfracloud.org/coprs/g/

tango-controls/tango/.

[34] https://docs.conda.io
[35] https://anaconda.org/tango-controls
[36] The conda-forge Project: Community-based Software

Distribution Built on the conda Package Format and
Ecosystem, doi:10.5281/zenodo.4774216

[37] https://github.com/conda-forge/conda-forge-
pinning-feedstock

[38] M. Canzari et al., “Satisfying wishes for SKA engineers:
how Taranta suite meets users’ needs”, in Software
and Cyberinfrastructure for Astronomy VI, SPIE, 2020,
pp. 700–706. doi:10.1117/12.2562585

[39] https://gitlab.com/tango-controls/rest-api

[40] J-L.Pons, “TangoGraphQL: A GraphQL binding for Tango
control system Web-based applications”, presented at the
18th International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS 2021),
Shanghai, China, October 2021, paper MOPV025, this
conference.

[41] https://indico.cells.es/event/619/
contributions/1462/attachments/1044/1728/
Vue_TangoGQL_SOLARIS.pdf

[42] https://vuejs.org/.

[43] https://gitlab.com/tango-controls/web/
tangogql

[44] https://indico.cells.es/event/619/
contributions/1463/attachments/1039/1708/
IC@CMSStatusTangoCommunityMeeting.pdf

[45] https://www.rust-lang.org/.

[46] Jeffrey M. Perkel, “Why scientists are turning to Rust”,
Nature, vol. 588, pp. 185–186, 2020. doi:10.1038/
d41586-020-03382-2

[47] https://gitlab.com/tango-controls/tango-rs

[48] https://crates.io/crates/tango-client

[49] https://github.com/SKAJohanVenter/tango-
controls-tui

[50] R. Bourtembourg, G. Cuní, M. Di Carlo, G.A. Fatkin,
S. James, L. Pivetta, et al., “Pushing the Limits of
Tango Archiving System using PostgreSQL and Time
Series Databases”, in Proc. ICALEPCS’19, New York, NY,
USA, Oct. 2019, pp. 1116–1121. doi:10.18429/JACoW-
ICALEPCS2019-WEPHA020

[51] https://gitlab.com/tango-controls/rfc

[52] https://tango-controls.readthedocs.io/
projects/rfc/en/latest/.

[53] P.P. Goryl, V. Hardion et al., “Tango Controls RFCs”,
presented at the 18th International Conference on
Accelerator and Large Experimental Physics Control
Systems (ICALEPCS 2021), Shanghai, China, October 2021,
paper TUBL03, this conference.

[54] https://gitlab.com/ska-telescope/ska-ser-log-
transactions

[55] S.N. Twum et al., “Implementing an Event Tracing Solution
With Consistently Formatted Logs for the SKA Telescope
Control System”, presented at the 18th International
Conference on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS 2021), Shanghai, China,
October 2021, paper TUBL02, this conference.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEAR01

Human Aspects, Collaborations, Management

WEAR01

549

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

