Author: Lonza, M.
Paper Title Page
MOPMU015 Control and Data Acquisition Systems for the FERMI@Elettra Experimental Stations 462
 
  • R. Borghes, V. Chenda, A. Curri, G. Gaio, G. Kourousias, M. Lonza, G. Passos, R. Passuello, L. Pivetta, M. Prica, M. Pugliese, G. Strangolino
    ELETTRA, Basovizza, Italy
 
  Funding: The work was supported in part by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
FERMI@Elettra is a single-pass Free Electron Laser (FEL) user-facility covering the wavelength range from 100 nm to 4 nm. The facility is located in Trieste, Italy, nearby the third-generation synchrotron light source Elettra. Three experimental stations, dedicated to different scientific areas, have been installed installed in 2011: Low Density Matter (LDM), Elastic and Inelastic Scattering (EIS) and Diffraction and Projection Imaging (DiProI). The experiment control and data acquisition system is the natural extension of the machine control system. It integrates a shot-by-shot data acquisition framework with a centralized data storage and analysis system. Low-level applications for data acquisition and online processing have been developed using the Tango framework on Linux platforms. High-level experimental applications can be developed on both Linux and Windows platforms using C/C++, Python, LabView, IDL or Matlab. The Elettra scientific computing portal allows remote access to the experiment and to the data storage system.
 
poster icon Poster MOPMU015 [0.884 MB]  
 
TUDAUST02 Status Report of the FERMI@Elettra Control System 589
 
  • M. Lonza, A. Abrami, F. Asnicar, L. Battistello, A.I. Bogani, R. Borghes, V. Chenda, S. Cleva, A. Curri, M. De Marco, M.F. Dos Santos, G. Gaio, F. Giacuzzo, G. Kourousias, G. Passos, R. Passuello, L. Pivetta, M. Prica, M. Pugliese, C. Scafuri, G. Scalamera, G. Strangolino, D. Vittor, L. Zambon
    ELETTRA, Basovizza, Italy
 
  Funding: The work was supported in part by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
FERMI@Elettra is a new 4th-generation light source based on a seeded Free Electron Laser (FEL) presently under commissioning in Trieste, Italy. It is the first seeded FEL in the world designed to produce fundamental output wavelength down to 4 nm with High Gain Harmonic Generation (HGHG). Unlike storage ring based synchrotron light sources that are well known machines, the commissioning of a new-concept FEL is a complex and time consuming process consisting in thorough testing, understanding and optimization, in which a reliable and powerful control system is mandatory. In particular, integrated shot-by-shot beam manipulation capabilities and easy to use high level applications are crucial to allow an effective and smooth machine commissioning. The paper reports the status of the control system and the experience gained in two years of alternating construction and commissioning phases.
 
slides icon Slides TUDAUST02 [8.064 MB]  
 
WEPMN034 YAMS: a Stepper Motor Controller for the FERMI@Elettra Free Electron Laser 958
 
  • A. Abrami, M. De Marco, M. Lonza, D. Vittor
    ELETTRA, Basovizza, Italy
 
  Funding: The work was supported in part by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
New projects, like FERMI@Elettra, demand for standardization of the systems in order to cut development and maintenance costs. The various motion control applications foreseen in this project required a specific controller able to flexibly adapt to any need while maintaining a common interface to the control system to minimize software development efforts. These reasons led us to design and build "Yet Another Motor Subrack", YAMS, a 3U chassis containing a commercial stepper motor controller, up to eight motor drivers and all the necessary auxiliary systems. The motors can be controlled locally by means of an operator panel or remotely through an Ethernet interface and a dedicated Tango device server. The paper describes the details of the project and the deployment issues.
 
poster icon Poster WEPMN034 [4.274 MB]  
 
WEPMU025 Equipment and Machine Protection Systems for the FERMI@Elettra FEL facility 1119
 
  • F. Giacuzzo, L. Battistello, L. Fröhlich, G. Gaio, M. Lonza, G. Scalamera, G. Strangolino, D. Vittor
    ELETTRA, Basovizza, Italy
 
  Funding: The work was supported in part by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
FERMI@Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac presently under commissioning in Trieste, Italy. Three PLC-based systems communicating to each other assure the protection of machine devices and equipment. The first is the interlock system for the linac radiofrequency plants; the second is dedicated to the protection of vacuum devices and magnets; the third is in charge of protecting various machine components from radiation damage. They all make use of a distributed architecture based on fieldbus technology and communicate with the control system via Ethernet interfaces and dedicated Tango device servers. A complete set of tools including graphical panels, logging and archiving systems are used to monitor the systems from the control room.
 
poster icon Poster WEPMU025 [0.506 MB]  
 
FRBHAULT04 Commissioning of the FERMI@Elettra Fast Trajectory Feedback 1314
 
  • G. Gaio, M. Lonza, R. Passuello, L. Pivetta, G. Strangolino
    ELETTRA, Basovizza, Italy
 
  Funding: The work was supported in part by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
FERMI@Elettra is a new 4th-generation light source based on a single pass Free Electron Laser (FEL). In order to ensure the feasibility of the free electron lasing and the quality of the produced photon beam, a high degree of stability is required for the main parameters of the electron beam. For this reason a flexible real-time feedback framework integrated in the control system has been developed. The first implemented bunch-by-bunch feedback loop controls the beam trajectory. The measurements of the beam position and the corrector magnet settings are synchronized to the 50 Hz linac repetition rate by means of the real-time framework. The feedback system implementation, the control algorithms and preliminary close loop results are presented.
 
slides icon Slides FRBHAULT04 [2.864 MB]