Author: Gonzalez-Berges, M.
Paper Title Page
MOPMN020 Integrating Controls Frameworks: Control Systems for NA62 LAV Detector Test Beams 285
  • O. Holme, J.A.R. Arroyo Garcia, P. Golonka, M. Gonzalez-Berges, H. Milcent
    CERN, Geneva, Switzerland
  • O. Holme
    ETH, Zurich, Switzerland
  The detector control system for the NA62 experiment at CERN, to be ready for physics data-taking in 2014, is going to be built based on control technologies recommended by the CERN Engineering group. A rich portfolio of the technologies is planned to be showcased and deployed in the final application, and synergy between them is needed. In particular two approaches to building controls application need to play in harmony: the use of the high-level application framework called UNICOS, and a bottom-up approach of development based on the components of the JCOP Framework. The aim of combining the features provided by the two frameworks is to avoid duplication of functionality and minimize the maintenance and development effort for future controls applications. In the paper the result of the integration efforts obtained so far are presented; namely the control applications developed for beam-testing of NA62 detector prototypes. Even though the delivered applications are simple, significant conceptual and development work was required to bring about the smooth inter-play between the two frameworks, while assuring the possibility of unleashing their full power. A discussion of current open issues is presented, including the viability of the approach for larger-scale applications of high complexity, such as the complete detector control system for the NA62 detector.  
poster icon Poster MOPMN020 [1.464 MB]  
WEPKN025 Supervision Application for the New Power Supply of the CERN PS (POPS) 756
  • H. Milcent, X. Genillon, M. Gonzalez-Berges, A. Voitier
    CERN, Geneva, Switzerland
  The power supply system for the magnets of the CERN PS has been recently upgraded to a new system called POPS (POwer for PS). The old mechanical machine has been replaced by a system based on capacitors. The equipment as well as the low level controls have been provided by an external company (CONVERTEAM). The supervision application has been developed at CERN reusing the technologies and tools used for the LHC Accelerator and Experiments (UNICOS and JCOP frameworks, PVSS SCADA tool). The paper describes the full architecture of the control application, and the challenges faced for the integration with an outsourced system. The benefits of reusing the CERN industrial control frameworks and the required adaptations will be discussed. Finally, the initial operational experience will be presented.  
poster icon Poster WEPKN025 [13.149 MB]  
WEPMS005 Automated Coverage Tester for the Oracle Archiver of WinCC OA 981
  • A. Voitier, P. Golonka, M. Gonzalez-Berges
    CERN, Geneva, Switzerland
  A large number of control systems at CERN are built with the commercial SCADA tool WinCC OA. They cover projects in the experiments, accelerators and infrastructure. An important component is the Oracle archiver used for long term storage of process data (events) and alarms. The archived data provide feedback to the operators and experts about how the system was behaving at particular moment in the past. In addition a subset of these data is used for offline physics analysis. The consistency of the archived data has to be ensured from writing to reading as well as throughout updates of the control systems. The complexity of the archiving subsystem comes from the multiplicity of data types, required performance and other factors such as operating system, environment variables or versions of the different software components, therefore an automatic tester has been implemented to systematically execute test scenarios under different conditions. The tests are based on scripts which are automatically generated from templates. Therefore they can cover a wide range of software contexts. The tester has been fully written in the same software environment as the targeted SCADA system. The current implementation is able to handle over 300 test cases, both for events and alarms. It has enabled to report issues to the provider of WinCC OA. The template mechanism allows sufficient flexibility to adapt the suite of tests to future needs. The developed tools are generic enough to be used to tests other parts of the control systems.  
poster icon Poster WEPMS005 [0.279 MB]  
WEPMU033 Monitoring Control Applications at CERN 1141
  • F. Varela, F.B. Bernard, M. Gonzalez-Berges, H. Milcent, L.B. Petrova
    CERN, Geneva, Switzerland
  The Industrial Controls and Engineering (EN-ICE) group of the Engineering Department at CERN has produced, and is responsible for the operation of around 60 applications, which control critical processes in the domains of cryogenics, quench protections systems, power interlocks for the Large Hadron Collider and other sub-systems of the accelerator complex. These applications require 24/7 operation and a quick reaction to problems. For this reason the EN-ICE is presently developing the monitoring tool to detect, anticipate and inform of possible anomalies in the integrity of the applications. The tool builds on top of Simatic WinCC Open Architecture (formerly PVSS) SCADA and makes usage of the Joint COntrols Project (JCOP) and UNICOS Frameworks developed at CERN. The tool provides centralized monitoring of the different elements integrating the controls systems like Windows and Linux servers, PLCs, applications, etc. Although the primary aim of the tool is to assist the members of the EN-ICE Standby Service, the tool may present different levels of details of the systems depending on the user, which enables experts to diagnose and troubleshoot problems. In this paper, the scope, functionality and architecture of the tool are presented and some initial results on its performance are summarized.  
poster icon Poster WEPMU033 [1.719 MB]  
THBHMUST01 Multi-platform SCADA GUI Regression Testing at CERN. 1201
  • P.C. Burkimsher, M. Gonzalez-Berges, S. Klikovits
    CERN, Geneva, Switzerland
  Funding: CERN
The JCOP Framework is a toolkit used widely at CERN for the development of industrial control systems in several domains (i.e. experiments, accelerators and technical infrastructure). The software development started 10 years ago and there is now a large base of production systems running it. For the success of the project, it was essential to formalize and automate the quality assurance process. The paper will present the overall testing strategy and will describe in detail mechanisms used for GUI testing. The choice of a commercial tool (Squish) and the architectural features making it appropriate for our multi-platform environment will be described. Practical difficulties encountered when using the tool in the CERN context are discussed as well as how these were addressed. In the light of initial experience, the test code itself has been recently reworked in OO style to facilitate future maintenance and extension. The paper concludes with a description of our initial steps towards incorporation of full-blown Continuous Integration (CI) support.
slides icon Slides THBHMUST01 [1.878 MB]