Proceedings of ICALEPCS2011, Grenoble, France

THBHMUSTO01

MULTI-PLATFORM SCADA GUI REGRESSION TESTING AT CERN
P.C. Burkimsher, M. Gonzalez-Berges, S. Klikovits, CERN, Geneva, Switzerland

Abstract

The JCOP Framework is a toolkit used widely at CERN
for the development of industrial control systems in
several domains (i.e. experiments, accelerators and
technical infrastructure). The software development
started 10 years ago and there is now a large base of
production systems running it. For the success of the
project, it was essential to formalize and automate the
quality assurance process. This paper will present the
overall testing strategy and will describe in detail
mechanisms used for GUI testing. The choice of a
commercial tool (Squish) and the architectural features
making it appropriate for our multi-platform environment
will be described. Practical difficulties encountered when
using the tool in the CERN context are discussed as well
as how these were addressed. In the light of initial
experience, the test code itself has been recently reworked
in object-oriented style to facilitate future maintenance
and extension. The current reporting process is described,
as well as future plans for easy result-to-specification
linking. The paper concludes with a description of our
initial steps towards incorporation of full-blown
Continuous Integration (CI) support.

INTRODUCTION

Many of the systems of the CERN Large Hadron
Collider (LHC) accelerator [1] and the sophisticated
physics experiments placed around its circumference are
controlled using commercial Supervisory Control and
Data Acquisition (SCADA) technology [2]. These
production control systems have an expected lifetime
upwards of 20 years, nevertheless are in general
implemented by an ever changing stream of developers
who frequently work on many other different sub-systems
too. The CERN Joint Controls Project’s JCOP
Framework [3] was introduced into this mix to minimize
the regular hurdles faced by new developers. The JCOP
Framework strives to hide much of the complexity of the
underlying SCADA tool used (WinCC-OA from Siemens,
previously known as PVSS [4]). The Framework further
aims to provide a level of consistency in the final
application, in order to minimize the cost of long term
maintenance as well as for operational safety reasons. The
Framework comprises not only code segments (libraries)
but also a substantial amount of Graphical User Interface
(GUI) [5] software. This paper outlines the deliberate
steps taken to ensure that the GUI implementations are
rigorously tested.

QUALITY ASSURANCE

A strict quality assurance strategy is necessary not only
to deal with the long project lifetime and staff rotation

Quality assurance

issues, but also with upgrades of the JCOP Framework
itself and the packages upon which it depends (e.g.
operating system version, SCADA tool, compilers,
database clients and servers).

GUI TESTING

Early on in the Framework project it was recognized
that the GUI mechanisms comprised a significant
proportion of the software being generated. Programmers
are used to testing library software in an automated
fashion, but GUI regression testing is often not included
[6]. To have full confidence in all of the modules of the
Framework package, it is necessary to automate testing of
their GUI aspects also. Considerable effort has therefore
been invested in GUI regression testing — on a daily basis
ensuring that the individual packages and components
still behave the same way they did yesterday. This
approach has proved to be very fruitful, especially when
new developers first start maintaining code. Inadvertent
side-effects of any changes made have been identified
within 24 hours.

IMPLEMENTATION

In practice, we are testing WinCC-OA panels. An initial
investigation using the tool ‘“Rational Robot” [7] was
dropped when ETM [8] switched the WINCC-OA
windowing system to Qt [9]. A specialised product for the
automated testing of Qt GUI interfaces was selected
called Squish [10], marketed by Froglogic. Like Qt itself,
Squish is available on many platforms, including those
used in control systems at CERN, namely Windows and
Linux. Out of the box, Squish allows you to record GUI
input and test the properties (including existence) of
screen objects.

Squish Recording Facility

Our first implementation made extensive use of the
Squish recording facility. Squish generates human
readable source code that, when executed, will replay
mouse gestures and keyboard input. We opted to produce
Python [11] code and have grown to appreciate the power
and flexibility of this language. Although Python is
interpreted, for this application domain there has never
been a performance issue.

In practice though, our first implementation was very
hard to maintain. Our surrounding environment was in a
state of constant and uncomfortably rapid flux. WINCC-
OA is upgraded to a new version each year or so.
Although ETM strove very hard (and were successful) in

1201

THBHMUSTO01

maintaining functional backwards compatibility, their
underlying implementation did change and this
unfortunately was visible to Squish and the testing
software. Underneath WINCC-OA, Qt itself has been
undergoing a major version change also. As our test suites
grew in size, more and more code needed to be changed
to keep the test system working with each new version.
Similar issues presented themselves with each new
version of Squish. Although in general each new Squish
version would bring highly desirable functional
enhancements, it was usually necessary to modify and
sometimes completely regenerate sections of Squish code.
Our naive approach simply did not scale.

Code Refactoring

It became clear that we needed to refactor our code to
make it more robust. We tackled this problem by
extracting repeated sequences of recorded code into
libraries, Fig. 1.

Testcase Level

Higher Level Library

Figure 1: Library Structure.

The first step was to extract all of the routines which
interact with GUI-widgets into their own library. The
library was implemented in object-oriented style [12].
This programming paradigm makes it easy to define an
instance of a GUI-widget once and to re-use it in several
places. Our library contains several classes (one for each
GUI-widget).

We then extracted all duplicate code from the test
scripts into several higher-level application libraries
dependent only on the above GUI-widget library. One
example of an application level library would be the
“Project Administration” library. This library contains a
class with methods for creating, starting, stopping and
deleting WINCC-OA projects, namely the functionality
made available in ETM’s “Project Administrator” panel.
The code of these application library routines is used in
nearly every test case. Extracting this code into a library
makes test cases more robust and maintainable in case of
changes of WINCC-OA.

The test case scripts themselves were thus reduced to
library calls and verifications. Development of new tests
is now quick and easy, as test creators can build on pre-
existing functionality.

1202

Proceedings of ICALEPCS2011, Grenoble, France

ENVIRONMENT

An important aspect of testing the Framework relates to
the fact that the Framework runs on 2 major platforms,
Windows and Linux.

One System Running On 2 Platforms

Our initial implementation attempted to validate the
software on both platforms by producing a system that
would execute on each of them. We opted to invoke our
tests (with all of their file-system specific definitions)
from within the Bash shell [13], running natively on
Linux [14] but using Cygwin [15] on Windows, Fig. 2.

A

WXP Linox

o,
Ll['j »E —_— puim «—

Figure 2: Platform commonality through Bash.

Although Cygwin is extremely powerful, the two
Bashes are not identical and cause significant problems.
Regularly updated versions of Cygwin provoked us into
looking for an alternative solution.

One System Controlling A 2nd Platform

Squish itself is
architecture, Fig. 3.

implemented as a client-server

Squish client. (Test Logic)

Squish Server. (Interface)

Application under Test
Figure 3: Squish is Client-Server.

A squish client executes the logic of the test scripts and
a server executes the program being tested. This
alternative arrangement was deemed to be appropriate for
our multi-platform target scenario. We learned the hard
way that this was not a particularly good idea. We decided
that the client code would always run on Windows and
would connect to the server on Windows or Linux as
appropriate. Although this superficially meant that there
was only one single body of testing code to maintain
(always on Windows), in practice the code differed rather
significantly depending on which was the target platform.
As before, our problems derived from file system issues:
Where was the program that was being tested going to get
its data from and write its results to? These issues were
not insurmountable, but they certainly made the code
somewhat messy.

We encountered another much more practical problem
which finally sounded the death knell to the “client-server
on different machines” approach. The CERN Windows
networked file-server environment was insufficiently
stable to be able to work in this way. From time to time

Quality assurance

Proceedings of ICALEPCS2011, Grenoble, France

network connections from Windows to Linux would
receive a very slow response, slow enough to cause the
applications and particularly their display (through the
Exceed tool [16]) to decide that the network had broken.
All of the windows on the target machine(s) would
collapse and all of the state of the system would be lost.
Any test had to be restarted from scratch — and there was
no guarantee that the new attempt would not suffer a
similar fate. We even tried displaying in a virtual session
and viewing with VNC [17] - but this was only of partial
help.

Time For A Re-think

We therefore took advantage of the code rewrite
opportunity described above to revert to an architecture
where the Squish client (the test logic) and the Squish
server (executing the code being tested) were once again
executed on the same target machine. We abandoned Bash
and rewrote the test harness completely in Python, which
not only made it more compatible across platforms but
also made it consistent with our use of Python for the
Squish test scripts.

At the beginning of the project, we were using physical
Windows and Linux machines as targets for testing. We
are now migrating to using Virtual Machines, hosted in
the CERN Computer Centre. The advantage for us is in
regard to the provision of space to house, power and cool
the machines. The advantage for CERN is that our virtual
machines run their jobs once per day and then go idle,
releasing VM server capacity for other useful work. Thus
far, our experience of this service has been excellent, with
our virtual machines being functionally indistinguishable
from real hardware.

The move to virtual machines has neither improved nor
made worse another problem we have commonly
encountered: GUI testing can be very sensitive to timing
issues. Running Emu in a different environment can
introduce significantly different timing behaviour. Even
though Squish implements a waitForObject() function
which can deal with many of the synchronisation issues,
we frequently see examples where the screen update is
out of step with internal data. Clicking to open up a tree
structure can appear to have completed, but pressing the
next mouse click too quickly can still cause problems. It
is tempting to sleep for a couple of seconds or so to give
the system time to catch up — but how many seconds is
enough? And how many seconds is enough on all
platforms, so that the code doesn’t suddenly break when
you change to a new operating system (Windows XP to
Linux or Windows 7) or to a new software release?

ORCHESTRATING THE TESTS

At the time of the code rewrite, we stepped back, took a
wider view of the system and decided to incorporate a
Continuous Integration (CI) tool [18][19] that would
manage execution of our tests across multiple machines,
operating systems and versions. We considered using

Quality assurance

THBHMUSTO01

Bamboo [20] from Atlassian as a CI tool as it integrates
cleanly with the other Atlassian tools (Jira, Confluence)
already in use at CERN. Bamboo however needs a license
and initial investigations showed it to be rather rigid in its
implementation. Instead, a more configurable (and free)
Open Source equivalent was selected called Hudson [21].

Hudson offers us the possibility to centrally manage
the testing whilst physically distributing it to multiple
machines with different operating systems and software
versions installed. Tests are triggered from a central
(Windows) “Hudson Master Machine” onto one or more
dissimilar remote platforms, Fig. 4. The Master machine
runs a web server and Hudson is configured and
controlled through any browser.

* Linux WP

Figure 4: Hudson Master-Slave architecture.

An added bonus is that Hudson provides us with a
convenient interface for having results returned to one
central machine from where reports can be generated for
sending to interested parties, Fig. 5.

Emu Summary s

Topic (Test Suite) Overall Result OK Program Runs (Test Cases) OK Booleans (Tests)

suite createAVirginPvssProject OK 171 00
suite deleteProject OK 11 33
suite exerciseAnalogDigitalComponent QK 11 272
suite_exerciseCaenComponent OK 355 99
suite exerciseWienerComponent OK 33 66
suite firstRunOfFwinstallationTool OK 11 00
suite_installFwCempenents OK 11 00

Extract of the 14 error lines in PVSS TLlog:
Figure 5: Example result email with hyperlinks.

To date, the same central team that developed the Emu
harness has also implemented the tests according to
specifications drawn up with the Framework Component
developers. This mode of working has several
advantages:

1. The tests are prepared independently of the
developers by a different individual, who is therefore
unlikely to be aware of some of the implicit assumptions
in the minds of those same developers. As such it is
considered that these tests may be more likely to find
errors than tests prepared by the developers themselves.

2. There is a written specification for the test
scenarios — and consequently these are well documented.
This may not always be the case in a situation where tests
are written by the developers themselves.

1203

THBHMUSTO01

Unfortunately this approach has a cost. The testing
team becomes a bottleneck as all test code must first be
written by them. For this reason we are planning to move
to a scenario where the developers themselves will be
able to plug their own tests into the Emu harness. Whilst
alleviating the bottleneck, this comes at the cost of
negating the advantages just described as well as having
implications for the licensing of the software tools being
used!

STATUS REVIEW

The theoretical advantages [18] of finding issues (bugs,
incompatibilities, etc) before software is released, have
once again been achieved in practice. New problems
(side-effects) inadvertently introduced by new
programmers joining the Framework development team
have been spotted during the very next overnight run. We
are able to test the JCOP Framework against new versions
of WINCC-OA very readily by creating a new test target
machine. This work is currently being extended to include
the testing of a greater number of components from the
JCOP Framework and also with new tests for the
UNICOS Framework [22].

CONCLUSIONS

A scalable testing architecture has been defined and
implemented. Automatic tests are executed every night on
a variety of platforms. The architecture is not restricted to
JCOP and is already being rolled out to encompass other
frameworks at CERN.

AUTHOR CONTACTS

paul.burkimsher@cern.ch; manuel.gonzalez@cern.ch;
stefan.klikovits@cern.ch

REFERENCES

Ask your favourite search engine for the most up-to-
date links, or try the following:

[1] LHC
http://public.web.cern.ch/public/en/lhc/lhc-en.html.

[2] SCADA http://en.wikipedia.org/wiki/SCADA.

[3] JCOP Framework
http://j2eeps.cern.ch/wikis/display/EN/JCOP+Frame
work.

[4] WinCC OA (PVSS)
http://www.etm.at/index_e.asp?id=2&m0id=6.

[5] GUI
http://en.wikipedia.org/wiki/Graphical user interfac
e.

1204

Proceedings of ICALEPCS2011, Grenoble, France

[6] An Integration testing Facility for the CERN
Accelerator Controls System, N. Stapley, M. Arruat,
J.C. Bau, S. Deghaye, C. Dehavay, W. Sliwinski, M.
Sobczak, ICALEPCS 2009
https://espace.cern.ch/be-
dep/CO/ICALEPCS%202009/1245%20%20An%20
Integration%20Testing%20Facility%20for%20the%
20CERN%20Accelerator%20Controls%20System/T
HPO085-Paper-FINAL.pdf.

[7] Rational Robot http://www-
01.ibm.com/software/awdtools/tester/robot/.

[8] ETM. http://www.etm.at/.

[9] Qt. http://qt.nokia.com/products/.

[10] Squish.
http://www.froglogic.com/products/index.php.

[11] Python. http://www.python.org/.

[12] Wegner, 1990; Peter Wegner, Brown University
[June 1990]: “Concepts and Paradigms of Object-
Oriented Programming”, Expansion of Oct 4
OOPSLA-89 Keynote Talk.

[13] Bash http://en.wikipedia.org/wiki/Bourne-
again_shell.

[14] Linux http://linux.web.cern.ch/linux/scientific5/.

[15] Cygwin “http://www.cygwin.com/”.

[16] Exceed
http://connectivity.opentext.com/products/exceed.as
pX.

[17] VNC http://www.realvnc.com/.

[18] Continuous Integration.
http://en.wikipedia.org/wiki/Continuous_integration.

[19] Fowler, 2006; Martin Fowler [01 May 2006]:
“Continuous Integration”,
http://martinfowler.com/articles/continuousIntegrati
on.html#BenefitsOfContinuousIntegration.

[20] Bamboo.
http://www.atlassian.com/software/bamboo/.

[21] Hudson.
http://en.wikipedia.org/wiki/Hudson_(software).

[22] UNICOS http://cern.ch/wikis/display/EN/UNICOS.

Quality assurance

