Keyword: cryogenics
Paper Title Other Keywords Page
S02SRU11 A New Architecture for Fermilab’s Cryogenic Control System controls, interface, network, software 96
 
  • J. Smolucha, A.R. Franck, K. Seino, S.L. Lackey
    Fermilab, Batavia, Illinois, USA
 
  In order to achieve design energy in the Tevatron, the magnet system will be operated at lower temperatures. The increased requirements of operating the Tevatron at lower temperatures necessitated a major upgrade to the both the hardware and software components of the cryogenic control system. The new architecture is based on a distributed topology which couples Fermilab designed I/O subsystems to high performance, 80386 execution processors via a variety of networks including: Arcnet, iPSB, and token ring.
Operated by the Universities Research Association Inc., under contract with the U.S. Dept. of Energy.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S02SRU11  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S03SRD08 The UNK Control System controls, software, network, interface 134
 
  • V. Alferov, V.L. Brook, A.F. Dunaitsev, S.G. Goloborodko, S.V. Izgarshev, V.V. Komarov, A. Lukyantsev, M.S. Mikheev, N.N. Trofimov, V.P. Sakharov, E.D. Scherbakov, A.I. Vaguine, V.P. Voevodin, V.D. Yourpalov, S.A. Zelepoukin
    IHEP, Moscow Region, Russia
  • B. Kuiper
    CERN, Meyrin, Switzerland
 
  The IHEP proton Accelerating and Storage Complex (UNK) includes in its first stage a 400 GeV conventional and a 3000 GeV superconducting ring placed in the same underground tunnel of 20.7 km circumference. The beam will be injected into UNK from the existing 70 GeV accelerator U-70. The experimental programme which is planned to start in 1995, will include 3000 GeV fixed target and 400-3000 GeV colliding beams physics. The size and complexity of the UNK dictate a distributed multiprocessor architecture of the control system. About 4000 of 8/16 bit controllers, directly attached to the UNK equipment will perform low level control and data acquisition tasks. The equipment controllers will be connected via the MIL-1553 field bus to VME based 32-bit front end computers. The TCP/IP network will interconnect front end computers in the UNK equipment buildings with UNIX workstations and servers in the Main Control Room. The report presents the general architecture and current status of the UNK control.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S03SRD08  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S04SRS04 Magnet Test Facility Control System for Superconducting Magnets of UNK controls, software, MMI, dipole 171
 
  • A.I. Agueev, K.F. Guertsev, A. Kazarian, H. Khoetsian, A. Agababian, A. Matevosian, V.I. Gridassov, A.A. Gussak, A.F. Dunaitsev, V.M. Proshin, V.E. Solovyov, E.A. Ustinov, V. Alferov, V. Krendelev, A. Lukyantsev, A. Sytin
    IHEP, Moscow Region, Russia
 
  An UNK Magnet Test Facility (MTF) is being constructed to provide cryogenic, electrical and magnet tests of superconducting (SC) magnets of UNK. The main parts of it are: The cryogenic system consisting in its turn of the central liquefier, ten satellite refrigerators, two compressors, purification system and transfer lines. The central liquefier supplies the satellite refrigerators with liquid helium. The liquefier is manufactured according to the scheme incorporating re-cooling by liquid nitrogen, two turbine expanders and a wet expander, - Four 8 kA, 24 V, ramped Power Supplies (PS) for cold testing of SC magnets, two 3 kA PS’s for instrumentation testing and calibration. Test facility in its turn consisting of: a) two dipoles and one quad benches for warm measurements; b) eight dipoles and two quad benches for cold measurements; c) two benches for instrumentation.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S04SRS04  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S07IC01 Interfacing Industrial Process Control Systems to LEP/LHC controls, interface, operation, software 269
 
  • M. Rabany
    CERN, Geneva, Switzerland
 
  Modern industrial process control systems have developed to meet the needs of industry to increase the production while decreasing the costs. Although particle accelerators designers have pioneered in control systems during the seventies, it has now become possible to them to profit of industrial solutions in substitution of, or in complement with the more traditional home made ones. Adapting and integrating such industrial systems to the accelerator control area will certainly benefit to the field in terms of finance, human resources and technical facilities offered off-the-shelf by the widely experienced industrial controls community; however this cannot be done without slightly affecting the overall accelerator control architecture. The paper briefly describes the industrial controls arena and takes example on an industrial process control system recently installed at CERN to discuss in detail the related choices and issues.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S07IC01  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S13MMI07 X-Window for Process Control in a Mixed Hardware Environment controls, vacuum, network, hardware 471
 
  • M.R. Clausen, K. Rehlich
    DESY, Hamburg, Germany
 
  X-Window is a common standard for display purposes on the current workstations. The possibility to create more than one window on a single screen enables the operators to gain more information about the process. Multiple windows from different control systems using mixed hardware is one of the problems this paper will describe. The experience shows that X-Window is a standard per definition, but not in any case. But it is an excellent tool to separate data-acquisition and display from each other over long distances using different types of hardware and software for communications and display. Our experience with X-Window displays for the cryogenic control system and the vacuum control system at HERA on DEC and SUN hardware will be described.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S13MMI07  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)