A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shen, G. B.

Paper Title Page
TPPA06 EPICS-Based Control System for Beam Diagnostics of J-PARC LINAC 96
 
  • Y. Kato, H. Sako, G. B. Shen
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Sato
    JAEA/LINAC, Ibaraki-ken
 
  A commercial measurement instrumentation (WE7000) is used at J-PARC LINAC, to measure beam current from SCT (Slow Current Transformer), beam energy from FCT (Fast Current Transformer), beam position from BPM (Beam Position Monitor), beam size from WSM (Wire Scanner Monitor), or beam loss from BLM (Beam Loss Monitor). The WE7000 is a module-type measurement station, and supports network-based data transmission and communication. A control system has been developed under EPICS framework for the beam diagnostic system to control all WE stations. A waveform signal from a SCT, a FCT, a BPM, a WSM, or a BLM is digitized in a WE7000 station and sent to an EPICS IOC. All signal voltages are calculated inside IOC from a raw digital count. Some physical variables are calculated from the signal voltages including beam current, beam position, and beam phase and beam energy. An EPCIS device driver was reutilized for the data acquisition. The GUI applications for data displays have been developed by using EPICS extensions tools. The current status is reported in this paper about the beam diagnostic system control.  
TOAB02 Current Status of the Control System for J-PARC Accelerator Complex 62
 
  • M. Adachi, S. F. Fukuta, S. H. Hatakeyama, M. T. Tanaka
    MELCO SC, Tsukuba
  • A. Akiyama, N. Kamikubota, T. Katoh, K. Kudo, T. Matsumoto, H. Nakagawa, J.-I. Odagiri, Y. Takeuchi, N. Yamamoto
    KEK, Ibaraki
  • H. Ikeda, T. Suzuki, N. T. Tsuchiya
    JAEA, Ibaraki-ken
  • Y. I. Itoh, Y. Kato, M. Kawase, H. Sakaki, H. Sako, G. B. Shen, H. Takahashi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Motohashi, M. Takagi, S. Y. Yoshida
    Kanto Information Service (KIS), Accelerator Group, Ibaraki
  • S. S. Sawa
    Total Support Systems Corporation, Tokai-mura, Naka-gun, Ibaraki
  • M. S. Sugimoto
    Mitsubishi Electric Control Software Corp, Kobe
  • H. Yoshikawa
    KEK/JAEA, Ibaraki-Ken
 
  J-PARC accelerator complex consists of a proton linac (LINAC), > a Rapid Cycle Synchrotron (RCS), and a Main Ring synchrotron (MR). The commissioning of LINAC already started in November 2006, while the commissioning of Main Ring synchrotron (MR) is scheduled in May 2008. Most of the machine components of MR have been installed in the tunnel. Introduction of electronic modules and wiring will be made by the end of 2007. For the control of MR, the J-PARC accelerator control network was extended to include the MR related parts in March 2007. IOC computers (VME-bus computers) for MR will be introduced in 2007. In addition, more server computers for application development will be also introduced in 2007. This paper reports the status of development for the J-PARC MR control system.  
slides icon Slides  
ROAA04 XAL Online Model Enhancements for J-PARC Commissioning and Operation 494
 
  • H. Ikeda
    Visual Information Center, Inc., Ibaraki-ken
  • M. Ikegami
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • T. Ohkawa, H. Sako, G. B. Shen
    JAEA, Ibaraki-ken
  • A. Ueno
    JAEA/LINAC, Ibaraki-ken
  • C. K. Allen
    LANL, Los Alamos, New Mexico
 
  The XAL application development environment has been installed as a part of the control system for the Japan Proton Accelerator Research Complex (J-PARC) in Tokai, Japan. XAL was initially developed at SNS and has been described at length in previous conference proceedings (e.g., Chu et. al. APAC07, Galambos et. al. PAC05, etc.). We outline the upgrades and enhancements to the XAL online model necessary for accurate simulation of the J-PARC linac. For example, we have added permanent magnet quadrupoles and additional space charge capabilities such as off-centered and rotated beams and bending magnets with space charge. In addition significant architectural refactoring was performed in order to incorporate the current, and past, upgrades into a robust framework capable of supporting future control operations. The architecture and design of XAL is as important as its function, as such, we also focus upon the revised architecture and how it supports a component-based, software engineering approach.  
slides icon Slides  
ROPB04 Beam Commissioning Software and Database for J-PARC LINAC 698
 
  • C. K. Allen
    LANL, Los Alamos, New Mexico
  • H. Ikeda
    Visual Information Center, Inc., Ibaraki-ken
  • H. Sakaki, G. B. Shen, H. Takahashi, H. Yoshikawa
    JAEA, Ibaraki-ken
  • H. Sako
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
  A beam commissioning software system based on a relational database (RDB) has been developed for the J-PARC LINAC. We developed two high-level software frameworks, JCE and XAL. JCE (Java Commissioning Environment) based on a scripting language SAD script has been developed in Java with device control, monitoring, online modelling and data analysis functions. XAL has been developed initially by SNS and developed for J-PARC. A commissioning database system has been developed to configure commonly these two frameworks, for model geometry, EPICS control, and calibration parameters. A server for unit conversion of magnet power supplies has also developed for the commissioning software. Commissioning applications for RF tuning, transverse matching, orbit correction, beam-based calibration, beam monitor controls have been developed using the two framework and successfully applied for beam tuning. We report on the status of development for the commissioning software system.  
slides icon Slides