Keyword: ECR
Paper Title Other Keywords Page
TUP2WA02 Momentum Slip-Stacking Simulations for CERN SPS Ion Beams with Collective Effects simulation, emittance, flattop, cavity 174
 
  • D. Quartullo, T. Argyropoulos, A. Lasheen
    CERN, Geneva, Switzerland
 
  The LHC Injectors Upgrade (LIU) Project at CERN aims at doubling the total intensity of the Pb-ion beam for the High-Luminosity LHC (HL-LHC) project. This goal can be achieved by using momentum slip-stacking (MSS) in the SPS, the LHC injector. This RF gymnastics, originally proposed to increase bunch intensity, will be used on the intermediate energy plateau to interleave two batches, reducing the bunch spacing from 100 to 50 ns. The MSS feasibility can be tested only in 2021, after the beam controls upgrade of the SPS 200 MHz RF system, so beam dynamics simulations are used to design this complicated beam manipulation. Simulations of the MSS were performed using the CERN BLonD code with a full SPS impedance model. Attention has been paid to the choice of the RF and machine parameters (beam energy, time duration, RF frequency and voltage programmes) to reduce losses and the final bunch length which is crucial for the injection into the LHC 400 MHz buckets. The initial beam parameters used in simulations were obtained from beam measurements in the first part of the SPS cycle taking into account bunch-by-bunch losses on flat bottom and development of bunch instabilities.  
slides icon Slides TUP2WA02 [8.272 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO027 Simulation of the Axial Injection Beam Line of the Reconstructed U200 Cyclotron of FLNR JINR cyclotron, solenoid, injection, emittance 319
 
  • N.Yu. Kazarinov, J. Franko, G.G. Gulbekyan, I.A. Ivanenko, I.V. Kalagin
    JINR, Dubna, Moscow Region, Russia
 
  Flerov Laboratory of Nuclear Reaction of Joint Institute for Nuclear Research begin the works under reconstruction of the cyclotron U200. The reconstructed cyclotron is intended for acceleration of heavy ions with mass-to-charge ratio A/Z within interval from 5 to 8 up to the fixed energies 3.5 and 5.3 MeV per unit mass. The intensity of the accelerated ions will be about 3 pmcA for lighter ions (A< 40) and about 0.3 pmcA for heavier ions (A<132). The cyclotron will be used in the microchip testing, production of the track pore membranes and for applied physics. The injection into cyclotron will be realized from the external superconducting ECR ion source. The simulation of the axial injection system of the cyclotron is presented in this report.  
poster icon Poster WEP2PO027 [0.679 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP1WC03 Design of 162-MHz CW Bunch-by-Bunch Chopper and Prototype Testing Results kicker, booster, injection, linac 428
 
  • A.V. Shemyakin, C.M. Baffes, J.-P. Carneiro, B.E. Chase, A.Z. Chen, J. Einstein-Curtis, D. Frolov, B.M. Hanna, V.A. Lebedev, L.R. Prost, G.W. Saewert, A. Saini, D. Sun
    Fermilab, Batavia, Illinois, USA
  • C.J. Richard
    NSCL, East Lansing, Michigan, USA
  • D. Sharma
    RRCAT, Indore (M.P.), India
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The PIP-II program of upgrades proposed for the Fermilab accelerator complex, is centered around a 800 MeV, 2 mA CW SRF linac. A unique feature of the PIP-II linac is the capability to form a flexible bunch structure by removing a pre-programmed set of bunches from a long-pulse or CW 162.5 MHz train, coming from the RFQ, within the 2.1-MeV Medium Energy Beam Transport (MEBT) section. The MEBT chopping system consists of two travelling-wave kickers working in sync followed by a beam absorber. The prototype components of the chopping system, two design variants of the kickers and a 1/4-size absorber, have been installed in the PIP-II Injector Test (PIP2IT) accelerator and successfully tested with beam of up to 5 mA. In part, one of the kickers demonstrated a capability to create an aperiodic pulse sequence suitable for synchronous injection into the Booster while operating at 500 V and average switching frequency of 44 MHz during 0.55 ms bursts at 20 Hz. This report presents the design of the PIP-II MEBT chopping system and results of prototypes testing at PIP2IT.
 
slides icon Slides THP1WC03 [4.615 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THP1WC03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)