Keyword: dipole
Paper Title Other Keywords Page
TUA1WD03 Commissioning Status and Plans of CSNS/RCS MMI, quadrupole, injection, acceleration 133
 
  • S.Y. Xu, Y.W. An, J. Chen, M.Y. Huang, H.F. Ji, Y. Li, S. Wang
    IHEP, Beijing, People's Republic of China
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
 
  The China Spallation Neutron Source (CSNS) is an accelerator-based science facility. CSNS is designed to accelerate proton beam pulses to 1.6 GeV kinetic energy, striking a solid metal target to produce spallation neutrons. CSNS has two major accelerator systems, a linear accelerator (80 MeV Linac) and a 1.6 GeV rapid cycling synchrotron (RCS). The Beam commissioning of CSNS has been commissioned recently. Beam had been accelerated to 61 MeV at CSNS/Linac on April 24, 2017, and 1.6 GeV acceleration at CSNS/RCS was successfully accomplished on July 7, 2017 with the injection energy of 61 MeV. Beam had been accelerated to 80 MeV at CSNS/Linac on January 6, 2018, and 1.6 GeV acceleration at CSNS/RCS was successfully accomplished on January 18, 2018 with the injection energy of 80 MeV. The initial machine parameter tuning and various beam studies were completed. In this paper, the commissioning experiences are introduced.  
slides icon Slides TUA1WD03 [10.794 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUA1WD03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO018 Magnetic Field Tracking at CSNS/RCS controls, MMI, acceleration, quadrupole 306
 
  • S.Y. Xu, S. Fu
    IHEP, Beijing, People's Republic of China
 
  Because of the differences of magnetic saturation and eddy current effects between different magnets, magnetic field tracking errors between different magnets is larger than 2.5 % at the Rapid Cycling Synchrotron (RCS) of Chinese Spallation Neutron Source (CSNS), and the induced tune shift is larger than 0.1. So larger tune shift may lead the beam to pass through the resonance lines. To reduce the magnetic field tracking errors, a method of wave form compensation for magnets of the Rapid Cycling Synchrotron was investigated on the magnets of CSNS/RCS. The wave form compensation was applied to CSNS/RCS commissioning. By performing wave form compensation, the maximum magnetic field tracking error was reduced from 2.5 % to 0.08 %, and the maximum tune shift over the ramping process was reduced from 0.1 to 0.004.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO022 Study on the Phase Space Painting Injection during the Beam Commissioning for CSNS injection, MMI, linac, neutron 309
 
  • M.Y. Huang, S. Wang, S.Y. Xu
    IHEP, Beijing, People's Republic of China
 
  During the beam commissioning of China Spallation Neutron Source (CSNS), different injection methods were used in different periods. In the early stage, since the precise position of the injection point was unknown and the beam power was relatively small, the fixed point injection was selected. In the later period, in order to increase the beam power and reduce the beam loss, the phase space painting method was used. In this paper, the phase space painting in the horizontal and vertical planes is studied in detail and the beam commissioning results of different painting injection are given and discussed. In addition, the different injection effects of the fixed point injection and painting injection are compared and studied.  
poster icon Poster WEP2PO022 [0.708 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)