Paper | Title | Other Keywords | Page |
---|---|---|---|
MOAM3P30 | The ESS Accelerator | linac, cavity, klystron, LLRF | 6 |
|
|||
The European Spallation Source, ESS, is a facility for research using neutron beams that is being built in Lund. It will be the world’s most powerful such facility when it comes into full operation in the next decade. Neutrons will be released from a rotating tungsten target when it is hit by 2 GeV protons provided by a superconducting linac at an unprecedented 5 MW of average beam power, serving 22 neutron instruments covering a wide range of fundamental and applied sciences. An overview of the project will be given, with emphasis on technology. Current status, plans and challenges will be reviewed. | |||
![]() |
Slides MOAM3P30 [21.103 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOAM4P40 | A Fifteen Year Perspective on the Design and Performance of the SNS Accelerator | linac, injection, electron, operation | 9 |
|
|||
Commissioning of the Spallation Neutron Source accelerator began approximately fifteen years ago. Since this time, the accelerator has broken new technological ground with the operation of the world’s first superconducting H− linac, the first liquid mercury target, and 1.4 MW of beam power. This talk will reflect on the issues and concerns that drove key decisions during the design phase, and will consider those decisions in the context of the actual performance of the accelerator. Noteworthy successes will be highlighted and lessons-learned will be discussed. Finally, a look forward toward the challenges associated with a higher power future at SNS will be presented. | |||
![]() |
Slides MOAM4P40 [8.952 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPL010 | ESSnuSB Project to Produce Intense Beams of Neutrinos and Muons | proton, linac, detector, injection | 207 |
|
|||
Funding: This project is now supported by the COST Action CA15139 "Combining forces for a novel European facility for neutrino-antineutrino symmetry-violation discovery" (EuroNuNet). A new project for the production of a very intense neutrino beam has arisen to enable the discovery of a leptonic CP violation. This facility will use the world’s most intense pulsed spallation neutron source, the European Spallation Source (ESS) under construction in Lund. Its linac is expected to be fully operational at 5 MW power by 2023, using 2 GeV protons. In addition to the neutrinos, the ESSnuSB proposed facility will produce a copious number of muons at the same time. These muons could be used by a future Neutrino Factory to study a possible CP violation in the leptonic sector and neutrino cross-sections. They could also be used by a muon collider or a low energy nuSTORM. The layout of such a facility, consisting in the upgrade of the linac, the use of an accumulator ring, a target/horn system and a megaton Water Cherenkov neutrino detector, is presented. The physics potential is also described. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPM5X01 | Injection Painting Improvements in the J-PARC RCS | injection, power-supply, controls, feedback | 299 |
|
|||
In the J-PARC 3GeV RCS, the injection painting is essential method for the reduction of the space charge force. In this method, the H− beam from Linac is arranged on the large phase space area of the ring orbit during multiple turns. To implement this method, painting magnets form the time variable beam orbit. Therefore, the precise output current control of the magnet power supply is required. Because the power supply controlled by mainly feedforward signal is operated, we developed the iterative tuning method for the optimum feedforward parameter determination. As a result, we could reduce the tracking error of the current compared to before. Furthermore, to improve the accuracy of the painting area size, we applied the output readjustment additionally. Because the current monitor value of the power supply was different from the actual magnetic field due to the delay in the circuit and the leakage field, we corrected the tracking of the current based on the measured painting area size determined by the analysis of the measured COD. As a result, we achieved the precise injection painting. This talk presents these improvement results of the injection painting in the RCS. | |||
![]() |
Slides TUPM5X01 [4.122 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPM6X01 | H− Charge Exchange Injection Issues at High Power | electron, injection, proton, vacuum | 304 |
|
|||
At low beam powers H− charge exchange injection into a storage ring or synchrotron is relatively simple. A thin stripper foil removes the two “convoy” electrons from the H− particle and the newly-created proton begins to circulate around the ring. At high beam powers there are complications due to the heat created in the stripper foil, the power in the H0 excited states, and the power in the convoy electrons. The charge-exchanged beam power at the Oak Ridge Spallation Neutron Source is the highest in the world. Although the SNS ring was carefully designed to operate at this level there have been surprises, primarily involving the convoy electrons. Examples include damage to the foil brackets due to reflected convoy electrons and damage to the electron collector due to the primary convoy electrons. The SNS Second Target Station project calls for doubling the beam power and thus placing even more stress on the charge-exchange-injection beam-line components. In this presentation we will compare charge-exchange-injection designs at high-power facilities around the world, discuss lessons learned, and describe the future plans at SNS. | |||
![]() |
Slides TUPM6X01 [10.929 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUAM7Y11 | High Current Uranium Beam Measurements at GSI-UNILAC for FAIR | brilliance, emittance, ion, proton | 319 |
|
|||
In the context of an advanced machine investigation program supporting the ongoing UNILAC (Universal Linear Accelerator) upgrade program, a new uranium beam intensity record (10 emA, U29+) at very high beam brilliance was achieved last year in a machine experiment campaign at GSI. The UNILAC as well as the heavy ion synchrotron SIS18 will serve as a high current heavy ion injector for the new FAIR (Facility for Antiproton and Ion Research) synchrotron SIS100. Results of the accomplished high current uranium beam measurements applying a newly developed pulsed hydrogen gas stripper (at 1.4'MeV/u) will be presented. The paper will focus on the evaluation and analysis of the measured beam brilliance and further implications to fulfil the FAIR heavy ion high intensity beam requirements. | |||
![]() |
Slides TUAM7Y11 [2.437 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPM5Y01 | ESS Linac Plans for Commissioning and Initial Operations | linac, rfq, quadrupole, dipole | 342 |
|
|||
Beam commissioning of the proton linac of the European Spallation Source (ESS) is planned to be conducted in 2018 and 2019. At this stage, the last 21 cryomodules are not yet installed and the maximum beam energy and power are 570 MeV and 1.4 MW, with respect to the nominal 2 GeV and 5 MW. The linac will be operated in this condition until the remaining cyromodules are installed in two stages in 2021 and 2022. On top of the common challenges of beam dynamics and machine protection, commissioning of a large scale machine, such as the ESS linac within a relatively short integrated time of less than 40 weeks imposes an additional challenge to the scheduling and planning. This paper lays out the current plans of the ESS linac for its beam commissioning as well as the initial operation. | |||
![]() |
Slides TUPM5Y01 [3.651 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPM2X01 | High Power Target Instrumentation at J-PARC for Neutron and Muon Sources | octupole, proton, neutron, optics | 391 |
|
|||
Funding: This work is partly supported by the MEXT Grant-in-Aid for Scientific Research (C) Grant no. 26390114. At the J-PARC, spallation neutron and muon sources are injected 3-GeV proton beam with power of 1 MW extracted from 25 Hz Rapid Cycling Synchrotron (RCS). Recently several shots of the beam with equivalent power of 1 MW were successfully delivered to the targets without significant beam loss. Since the pitting erosion on the mercury target vessel utilized for spallation neutron source is known to be proportional to the 4th power of the beam current density, peak current density at the target should be kept as low as possible so that we have developed beam-flattening system by nonlinear beam optics using octupole magnets. To carry out the beam tuning efficiently, beam-tuning tool had been developed by using SAD code system. It is found that the shape of the beam can be controlled as designed. By using anti-correlated painting at the injection of the RCS, the beam was found to be shaped more flat distribution. The peak current density at the target can be reduced by 30 % with the present nonlinear optics without significant beam loss around at octupole magnets, which mitigates 76 % of the damage at the target vessel. |
|||
![]() |
Slides WEPM2X01 [9.327 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEAM3Y01 | Present Status of the High Current Linac at Tsinghua University and Its Application | proton, rfq, neutron, linac | 413 |
|
|||
The CPHS (Compact Pulsed Hadron Source) linac at Tsinghua University, is now in operation as an achievement of its mid-term objective. Presently the RFQ accelerator is operated stably with the beam energy of 3 MeV, peak current of 26 mA, pulse length of 100 μs and repetition rate of 20 Hz. After the maintenance period the transmission rate of the RFQ accelerator has been recovered from 65% to 91%. The application of the proton and neutron beam is introduced in this paper. | |||
![]() |
Slides WEAM3Y01 [8.616 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEAM7Y01 | The Beam Delivery System of the European Spallation Source | multipole, proton, simulation, controls | 427 |
|
|||
The European Spallation Source (ESS) will apply a fast beam scanning system to redistribute the proton beam transversely across the spallation target surface. The system operates at sweep frequencies of tens of kHz and efficiently evens out the time-averaged beam intensity within a nominal beam footprint, thus reducing the level of beam-induced material damage. A modular design approach divides the raster action in each direction across 4 independent magnet-supply systems to distribute the magnetic load, ease the peak output power per modulator, and in general reduce the impact of single points of failure. The state of the magnet design and power supply topology will be discussed. | |||
![]() |
Slides WEAM7Y01 [6.037 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THAM2X01 | The Operation Experience at KOMAC | operation, linac, DTL, ion | 468 |
|
|||
Funding: This work was supported by the Ministry of Science, ICT & Future Planning of the Korean Government. A 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex) is composed of a 50-keV microwave ion source, a 3-MeV four-vane-type RFQ, a 100-MeV DTL and 10 target stations for proton irradiation on samples from many application fields. The linac was commissioned in 2013 and the user service started in July 2013 with delivering proton beam to two target stations: one for a 20-MeV beam and the other for a 100-MeV beam. In 2015, the linac has been operated more than 2,800 hours with an availability of greater than 89%. The unscheduled downtime was about 73 hours, mainly due to problems of ion source arcing and failures of pulsed high-voltage power system. More than 2,100 samples from various fields such as materials science, bio-life and nano technology and nuclear science, were treated in 2015. Currently, a new target station for radioisotope production is under commissioning and a new target station for low-flux irradiation experiments is being installed. Operational experiences of the 100-MeV linac during the past 3 years will be presented in the workshop. |
|||
![]() |
Slides THAM2X01 [6.669 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THAM2Y01 | Measurements of Beam Pulse Induced Mechanical Strain Inside the SNS* Target Module | radiation, simulation, experiment, proton | 532 |
|
|||
Funding: * ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. Because several of the SNS targets have had a shorter lifetime than desired, a new target has been instrumented with strain sensors to further our understanding of the proton beam’s mechanical impact. The high radiation and electrically noisy environment led us to pick multi-mode fiber optical strain sensors over other types of strain sensors. Special care was taken to minimize the impact of the sensors on the target’s lifetime. We also placed accelerometers outside the target to try correlating the outside measurements with the internal measurements. Remote manipulators performed the final part of the installation, as even residual radiation is too high for humans to come close to the target’s final location. The initial set of optical sensors on the first instrumented target lasted just long enough to give us measurements from different proton beam intensities. A second set of more rad-hard sensors, installed in the following target, lasted much longer, to give us considerably more data. We are developing our own rad-hard, single-mode fiber optic sensors. This paper describes the design, installation, data-acquisition system, the results of the strain sensors, and future plans. |
|||
![]() |
Slides THAM2Y01 [13.157 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||