Author: Li, K.S.B.
Paper Title Page
MOAM5P50 LHC Run 2: Results and Challenges 14
 
  • R. Bruce, G. Arduini, H. Bartosik, R. De Maria, M. Giovannozzi, G. Iadarola, J.M. Jowett, M. Lamont, A. Lechner, K.S.B. Li, D. Mirarchi, E. Métral, T. Pieloni, S. Redaelli, G. Rumolo, B. Salvant, R. Tomás, J. Wenninger
    CERN, Geneva, Switzerland
 
  The first proton run of the LHC was very successful and resulted in important physics discoveries. It was followed by a two-year shutdown where a large number of improvements were carried out. In 2015, the LHC was restarted and this second run aims at further exploring the physics of the standard model and beyond at an increased beam energy. This article gives a review of the performance achieved so far and the limitations encountered, as well as the future challenges for the CERN accelerators to maximize the data delivered to the LHC experiments in Run 2. Furthermore, the status of the 2016 LHC run and commissioning is discussed.  
slides icon Slides MOAM5P50 [9.283 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAM2X01 Measurement and Interpretation of Transverse Beam Instabilities in the CERN Large Hadron Collider (LHC) and Extrapolations to HL-LHC 254
 
  • E. Métral, G. Arduini, N. Biancacci, X. Buffat, L.R. Carver, G. Iadarola, K.S.B. Li, T. Pieloni, A. Romano, G. Rumolo, B. Salvant, M. Schenk, C. Tambasco
    CERN, Geneva, Switzerland
  • J. Barranco
    EPFL, Lausanne, Switzerland
 
  Since the first transverse instability observed in 2010, many studies have been performed on both measurement and simulation sides and several lessons have been learned. In a machine like the LHC, not only all the mechanisms have to be understood separately, but the possible interplays between the different phenomena need to be analyzed in detail, including the beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities for HL-LHC), linear and nonlinear chromaticity, Landau octupoles (and other intrinsic nonlinearities), transverse damper, space charge, beam-beam (long-range and head-on), electron cloud, linear coupling strength, tune separation between the transverse planes, tune split between the two beams, transverse beam separation between the two beams, etc. This paper reviews all the transverse beam instabilities observed and simulated so far, the mitigation measures which have been put in place, the remaining questions and challenges and some recommendations for the future.  
slides icon Slides TUAM2X01 [36.385 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAM4X01 Electron Cloud in the CERN Accelerator Complex 266
 
  • G. Rumolo, H. Bartosik, E. Belli, G. Iadarola, K.S.B. Li, L. Mether, A. Romano
    CERN, Geneva, Switzerland
  • M. Schenk
    EPFL, Lausanne, Switzerland
 
  Operation with closely spaced bunched beams causes the build up of an Electron Cloud (EC) in both the LHC and the two last synchrotrons of its injector chain (PS and SPS). Pressure rise and beam instabilities are observed at the PS during the last stage of preparation of the LHC beams. The SPS was affected by coherent and incoherent emittance growth along the LHC bunch train over many years, before scrubbing has finally suppressed the EC in a large fraction of the machine. When the LHC started regular operation with 50 ns beams in 2011, EC phenomena appeared in the arcs during the early phases, and in the interaction regions with two beams all along the run. Operation with 25 ns beams (late 2012 and 2015), which is nominal for LHC, has been hampered by EC induced high heat load in the cold arcs, bunch dependent emittance growth and degraded beam lifetime. Dedicated and parasitic machine scrubbing is presently the weapon used at the LHC to combat EC in this mode of operation. This talk summarises the EC experience in the CERN machines (PS, SPS, LHC) and highlight the dangers for future operation with more intense beams as well as the strategies to mitigate or suppress the effect.  
slides icon Slides TUAM4X01 [9.785 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAM3X01 Code Development for Collective Effects 362
 
  • K.S.B. Li, H. Bartosik, G. Iadarola, A. Oeftiger, A. Passarelli, A. Romano, G. Rumolo, M. Schenk
    CERN, Geneva, Switzerland
  • S. Hegglin
    ETH, Zurich, Switzerland
  • A. Oeftiger, M. Schenk
    EPFL, Lausanne, Switzerland
 
  The presentation will cover approaches and strategies of modeling and implementing collective effects in modern simulation codes. We will review some of the general approaches to numerically model collective beam dynamics in circular accelerators. We will then look into modern ways of implementing collective effects with a focus on plainness, modularity and flexibility, using the example of the PyHEADTAIL framework, and highlight some of the advantages and drawbacks emerging from this method. To ameliorate one of the main drawbacks, namely a potential loss of performance compared to the classical fully compiled codes, several options for speed improvements will be mentioned and discussed. Finally some examples and application will be shown together with future plans and perspectives.  
slides icon Slides WEAM3X01 [65.643 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPM7X01 Use of RF Quadrupole Structures to Enhance Stability in Accelerator Rings 505
 
  • M. Schenk, A. Grudiev, K.S.B. Li, K. Papke
    CERN, Geneva, Switzerland
 
  The beams required for the high luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN call for efficient mechanisms to suppress transverse collective instabilities. In addition to octupole magnets installed for the purpose of Landau damping, we propose to use radio frequency (rf) quadrupole structures to considerably enhance the aforementioned stabilising effect. By means of the PyHEADTAIL macroparticle tracking code, the stabilising mechanism introduced by an rf quadrupole is studied and discussed. As a specific example, the performance of an rf quadrupole system in presence of magnetic octupoles is demonstrated for HL-LHC. Furthermore, potential performance limitations such as the excitation of synchro-betatron resonances are pointed out. Finally, efforts towards possible measurements with the CERN Super Proton Synchrotron (SPS) are discussed aiming at studying the underlying stabilising mechanisms experimentally.  
slides icon Slides THPM7X01 [37.755 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)