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Transverse instabilities are a concern based on the experience of the
LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)
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Transverse instabilities are a concern based on the experience of the
LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)
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RUN 1 (2010-2012)

Measurements of transverse instabilities in the LHC started on
Saturday 15/05/2010 during the 1St ramp with an ~ nominal bunch
(with neither transverse damper nor Landau octupoles)
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Measurements of transverse instabilities in the LHC started on
Saturday 15/05/2010 during the 1St ramp with an ~ nominal bunch
(with neither transverse damper nor Landau octupoles)

Instability at ~ 2 TeV for both beams
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RUN 1 (2010-2012)

Detailed study 2 days after on flat-top (Q’ ~ 6) with Landau octupoles
which were reduced in steps
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Detailed study 2 days after on flat-top (Q’ ~ 6) with Landau octupoles
which were reduced in steps
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Detailed study 2 days after on flat-top (Q’ ~ 6) with Landau octupoles
which were reduced in steps
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Detailed study 2 days after on flat-top (Q’ ~ 6) with Landau octupoles
which were reduced in steps
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RUN 1 (2010-2012)
1st TCBI rise-time studies (for mode 0) with 48 bunches (12 + 36)
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RUN 1 (2010-2012)
1st TCBI rise-time studies (for mode 0) with 48 bunches (12 + 36)
Good agreement at 450 GeV
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~ 2-3 faster rise-times observed at 3.5 TeV (but uncertainty on
chromaticities)
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1st TCBI rise-time studies (for mode 0) with 48 bunches (12 + 36)
Good agreement at 450 GeV

> Horizontal experimental data
< Vertical experimental data
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~ 2-3 faster rise-times observed at 3.5 TeV (but uncertainty on
chromaticities)

Landau octupole current for stability at 3.5 TeV within factor ~ 2
with predictions (even less than predicted)
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RUN 1 (2010-2012)

Several other measurements of collective effects were also
performed in good agreement with predictions
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Several other measurements of collective effects were also
performed in good agreement with predictions

=> Everything started very well (~ as predicted)!
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RUN 1 (2010-2012)

Several other measurements of collective effects were also
performed in good agreement with predictions

=> Everything started very well (~ as predicted)!

...Things started to become more involved when we tried to push the
performance of the LHC in 2011, and in particular in 2012 (year of
discovery of the “Higgs-like” boson)...
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RUN 1 (2010-2012)

Beam energy 7 TeV (4 in 2012)

Number of particles per bunch 1.15 10" (~ 1.6 in 2012)

Number of bunches per beam 2808 (1380 in 2012)

Bunch spacing 25 ns (50 in 2012)

Norm. rms. trans. emittance 3.75 pym (~ 2.2in 2012)

Revolution frequency 11245 Hz
Rms bunch length 7.5 cm (~10in 2012)
Bunch charge 18.4 nC (25.6 in 2012)
Total beam current 0.58 A (~0.4in 2012)
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Beam energy 7 TeV (4 in 2012)

Number of particles per bunch 1.15 10" (~ 1.6 in 2012)

Number of bunches per beam 2808 (1380 in 2012)

Bunch spacing 25 ns (50 in 2012)

Norm. rms. trans. emittance 3.75 pym (~ 2.2in 2012)

Revolution frequency f, 11245 Hz

7 7.5 cm (~10in 2012)

Bunch charge Q 18.4 nC (25.6 in 2012)
I, 0.58 A (~0.4in 2012)

=> Bunch brightness reached: ~ (1.6 / 1.15) x (3.75 /] 2.2) ~ 2.4 times
larger than nominal (at 4 TeV)!

Rms bunch length o

Total beam current
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Beam energy 7 TeV (4 in 2012)

Number of particles per bunch 1.15 10" (~ 1.6 in 2012)

Number of bunches per beam 2808 (1380 in 2012)

Bunch spacing 25 ns (50 in 2012)

Norm. rms. trans. emittance 3.75 pym (~ 2.2in 2012)

Revolution frequency f, 11245 Hz

7 7.5 cm (~10in 2012)

Bunch charge Q 18.4 nC (25.6 in 2012)
I, 0.58 A (~0.4in 2012)

=> Bunch brightness reached: ~ (1.6 / 1.15) x (3.75 /] 2.2) ~ 2.4 times
larger than nominal (at 4 TeV)!

Rms bunch length o

Total beam current

=> Record peak luminosity: 0.77 x 1034 cm-2s-
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RUN 1 (2010-2012)

=> 3 types (in fact 2 after careful analysis) of instabilities were observed
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RUN 1 (2010-2012)

1) In collision: “snowflakes”
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Always in H only (both beams)

Concerned initially only IP8 private bunches => Disappeared
when filling scheme was changed

Happens on selected bunches with insufficient tune spread (and
thus Landau damping) due to no BBHO collisions (or offsets)
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RUN 1 (2010-2012)

2) During the collapsing process (putting the beams into collision)
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2) During the collapsing process (putting the beams into collision)
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2) During the collapsing process (putting the beams into collision)
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2) During the collapsing process (putting the beams into collision)

Courtesy
of G. Arduini

R.. . |
at ~ 21 oinIP1 and ~ 1.2 o in IP5

Example of instability
(estimated from luminosities at the moment of the dump)

Alsoin H

Happened only once or twice during the intensity ramp-up =>
Was never observed later in operational conditions
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3) During or at the end of the squeeze process => End-Of-Squeeze
Instability (EOSI)
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3) During or at the end of the squeeze process => End-Of-Squeeze
Instability (EOSI)
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3) During or at the end of the squeeze process => End-Of-Squeeze
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RUN 1 (2010-2012)

Actions taken
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Chromaticities: as low as possible (1-2 units)

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




RUN 1 (2010-2012)

Actions taken

Initial recommendations
Chromaticities: as low as possible (1-2 units)

Transverse damper gain: as low as possible
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RUN 1 (2010-2012)

Actions taken

Initial recommendations

Chromaticities: as low as possible (1-2 units) Focusing octupoles
Transverse damper gain: as low as possible

Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)
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Actions taken

Initial recommendations
Chromaticities: as low as possible (1-2 units)
Transverse damper gain: as low as possible

Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)

With issues discussed before, several actions were taken to continue
and push the performance
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Actions taken

Initial recommendations
Chromaticities: as low as possible (1-2 units)
Transverse damper gain: as low as possible

Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)

With issues discussed before, several actions were taken to continue
and push the performance

Proposed to change the sign of the Landau octupoles such that the
tune spreads from BBLR and octupoles do not fight against each
other (S. Fartoukh)
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RUN 1 (2010-2012)

Actions taken

Initial recommendations
Chromaticities: as low as possible (1-2 units)
Transverse damper gain: as low as possible

Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)

With issues discussed before, several actions were taken to continue
and push the performance

Proposed to change the sign of the Landau octupoles such that the
tune spreads from BBLR and octupoles do not fight against each
other (S. Fartoukh)

New values for the gain of the transverse damper, chromaticities
and Landau octupole current suggested after a new analytical
approach (NHTVS from A. Burov)
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RUN 1 (2010-2012)

Actions taken

Initial recommendations
Chromaticities: as low as possible (1-2 units)
Transverse damper gain: as low as possible

Landau octupoles: as low as possible & LOF < 0 (better for 1-beam)

With issues discussed before, several actions were taken to continue
and push the performance

Proposed to change the sign of the Landau octupoles such that the
tune spreads from BBLR and octupoles do not fight against each
other (S. Fartoukh)

New values for the gain of the transverse damper, chromaticities
and Landau octupole current suggested after a new analytical
approach (NHTVS from A. Burov)

=> Finally used high chromaticities (~ 15) + ~ maximum octupole
current (max = + 550 A) + ~ maximum damper gain (50-turn damping)...

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016
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Seems that main reason for which situation improved was the increase
of chromaticity (which was not well corrected)
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Transverse damper was not fully bunch-by-bunch initially => More
octupole current required for low chromaticities
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RUN 1 (2010-2012)

Lessons learned

Seems that main reason for which situation improved was the increase
of chromaticity (which was not well corrected)

Running at high chromaticity prevented to reach negative values

Transverse damper was not fully bunch-by-bunch initially => More
octupole current required for low chromaticities

Initial transverse damper Fully bunch-by-bunch (flat gain)

CB stabilizing octupole cuarent, A

Courtesy of A. Burov
Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




RUN 1 (2010-2012)

Lessons learned

Change in octupole sign was finally found not to be helpful from both
i) measurements
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¢ Lessons learned

= Change in octupole sign was finally found not to be helpful from both
i) measurements

Fill 3231 .

18.5]

-t
©
o

—
~
w

Courtesy
of T. Pieloni

!

!

-

=) ;
g EY
o i
- '
S r
<t

;"
o =

. ~. -
—

o

S A
Q

v

= ;
1]

-

£ ¥
Q -

=

€ r

[
o
o

0.320 0.325
VB1 spectrum

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




RUN 1 (2010-2012)

¢ Lessons learned

= Change in octupole sign was finally found not to be helpful from both
i) measurements
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=> EOSI could not be cured / understood yet
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RUN 1 (2010-2012)

¢ Lessons learned

Change in octupole sign was finally found not to be helpful from both
i) measurements
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=> EOSI could not be cured / understood yet
=> Still potential worry for the future

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




RUN 1 (2010-2012)

Lessons learned

and ii) simulations (see stability diagram below)
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RUN 1 (2010-2012)

Lessons learned

and ii) simulations (see stability diagram below) Courtesy of X. Buffat

«10~4 2012 config.

=500
Sl —— 500A

T 0 1 2
Re(AQ) ~ x107°
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RUN 1 (2010-2012)

Lessons learned

and ii) simulations (see stability diagram below) Courtesy of X. Buffat

x10~4 2012 config. Nominal config.

=500 — 500A
Sl —— 500A 1 1l — 500 A

A\

T 0 1 2-3 -1 o0 1 2
Re(AQ)  x107° Re(AQ)  x1073

However, a positive sign is predicted to be much better for the case of
the Nominal configurations => This is why the positive sign of the
octupoles is used during Run 2

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




RUN 1 (2010-2012)

Lessons learned

Main lesson learnt for the future was to better study the interplays
between (all) the different mechanisms in a machine like the LHC
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Lessons learned

Main lesson learnt for the future was to better study the interplays
between (all) the different mechanisms in a machine like the LHC

A lot of work has been done over the last few years with in particular
Proposed mechanism of the 3-beam instability (A. Burov)

Detailed analysis of the transverse mode coupling instability of
colliding bunches (S. White)
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RUN 1 (2010-2012)

Lessons learned
Main lesson learnt for the future was to better study the interplays

between (all) the different mechanisms in a machine like the LHC

A lot of work has been done over the last few years with in particular
Proposed mechanism of the 3-beam instability (A. Burov)
Detailed analysis of the transverse mode coupling instability of

colliding bunches (S. White)
Proposed mechanism of a modification of the stability diagram by

some beam-induced noise (X. Buffat)

Im(AQ)

Courtesy of X. Buffat
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RUN 1 (2010-2012)

Lessons learned
Main lesson learnt for the future was to better study the interplays

between (all) the different mechanisms in a machine like the LHC
A lot of work has been done over the last few years with in particular

Proposed mechanism of the 3-beam instability (A. Burov)
Detailed analysis of the transverse mode coupling instability of

colliding bunches (S. White)
Proposed mechanism of a modification of the stability diagram by

some beam-induced noise (X. Buffat) => To be able to learn more on
stability diagrams from beam-based measurements, Beam Transfer

Measurements (BTF) should be performed

Im(AQ)

Courtesy of X. Buffat

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016
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2015

Impedance-induced transverse beam instability: Single bunch
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2015

Impedance-induced transverse beam instability: Single bunch

Np=1.0el1, e=2um, 40,=1.2ns, Foc.Oct=Positive, Plane=H, Zs,.ior=1

d=50 .
d=1ooutl1?r1§s i DELPHI with
d=200 turns
d=co turns

T IbFT perfect damper
I 1b_EOS

Courtesy of L.R. Carver
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2015

Impedance-induced transverse beam instability: Single bunch

Np=1.0el1, e=2um, 40,=1.2ns, Foc.Oct=Positive, Plane=H, Zs,.ior=1

DELPHI with

perfect damper

Courtesy of L.R. Carver

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




2015
Destabilising effect of e-cloud at 6.5 TeV: 72 bunches
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2015
Destabilising effect of e-cloud at 6.5 TeV: 72 bunches

Np=1.0el1, e=2um, 40,=1.2ns, Foc.Oct=Positive, Plane=H, Zg, io,r=1

T T T T T T T T T T p— T T T T T T

4200 turns DELPHI with

d=100 turns perfect damper

d=50 turns
1x72b_25ns_28/08/15
1x72b_25ns_05/11/15

After some scrubbing

Courtesy of L.R. Carver
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2015
Destabilising effect of e-cloud at 6.5 TeV: 72 bunches

Np=1.0el1, e=2um, 40,=1.2ns, Foc.Oct=Positive, Plane=H, Zg, io,r=1

T T T T T T T T T T p— T T T T T T

4200 turns DELPHI with

d=100 turns perfect damper

d=50 turns
1x72b_25ns_28/08/15
1x72b_25ns_05/11/15

After some scrubbing

B oo 1o 1y

[§e]
o

Courtesy of L.R. Carver
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2015
Destabilising effect of e-cloud at 6.5 TeV: 72 bunches

Np=1.0el1, e=2um, 40,=1.2ns, Foc.Oct=Positive, Plane=H, Zg, io,r=1

T T T T T T T T T T p— T T T T T T

4200 turns DELPHI with

d=100 turns perfect damper

d=50 turns
1x72b_25ns_28/08/15
1x72b_25ns_05/11/15

After some scrubbing

1

[§e]
o

T~15-20 s
AP_~ 0.3 deg

Courtesy of L.R. Carver 2 nodes

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016
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Destabilising effect of linear coupling at injection
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2015

Destabilising effect of linear coupling at injection

When the injection working point was optimized (for e-cloud)
=> (0.275,0.295) instead of (0.28,0.31)
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Destabilising effect of linear coupling at injection

When the injection working point was optimized (for e-cloud)
=> (0.275,0.295) instead of (0.28,0.31)

When Laslett tune shifts not corrected during injection
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2015

Destabilising effect of linear coupling at injection

When the injection working point was optimized (for e-cloud)
=> (0.275,0.295) instead of (0.28,0.31)

When Laslett tune shifts not corrected during injection

—— BBQ tunesH —— BBQtunes V

20 1el4

6000 | 0.34 |0.34
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Courtesy of L.R. Carver

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




2015

Destabilising effect of linear coupling at injection

When the injection working point was optimized (for e-cloud)
=> (0.275,0.295) instead of (0.28,0.31)

When Laslett tune shifts not corrected during injection

—— BBQ tunesH —— BBQtunes V

20 1el4

6000 | 0.34 |0.34
1Q,-Q,|=0.009 032 |032 |°

1Q,-Q,=0.02

=
ol

5000

0.30 L] 0.30 > 4
4000 . 0

>

0,28 < 0.28
30008 &
0.26 8’ 0.26

2000 1548 0.4

!A
o

w
BSRT H

Intensity
o
ol

BBQ tunes
N

1000 |29 022 |1

0 020 '020 '0

. ) ) Courtesy of L.R. Carver
=> Believed to be due to linear coupling (see later)
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15T BTF measurements in the LHC and 1st stability diagram measured

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




2015

15T BTF measurements in the LHC and 1st stability diagram measured

— Semi-analytical
— BTF Measuraments

— Semi-analytical
| — BTF Measuraments

Phase [rad]

Courtesy of C. Tambasco




2015

15T BTF measurements in the LHC and 1st stability diagram measured

— Semi-analytical
— BTF Measuraments

e e BTF Measuraments ||
— Semi-analytical

Calibration factor
still needed

— Semi-analytical
| — BTF Measuraments

Phase [rad]

Courtesy of C. Tambasco




2015

Closer look recently: why do we see a loop in the BTF and what are
its characteristics?

Courtesy of C. Tambasco
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Closer look recently: why do we see a loop in the BTF and what are
its characteristics?

Courtesy of C. Tambasco

Loop also revealed in
simulation (COMBI)
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2015

Closer look recently: why do we see a loop in the BTF and what are
its characteristics?

Mathematical description

of the BTF of a loop

Courtesy of C. Tambasco

Loop also revealed in
simulation (COMBI)
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2015

Closer look recently: why do we see a loop in the BTF and what are
its characteristics?

Mathematical description
o o BVTF Measur;ments | of the BTF of a Ioop

— Semi-analytical

Clear[q];
=0.4;

deltaQRe[qg ] := (F1xCos[g] + F2xq) xF3;

deltaQIm[q ] := F4xSin[qg] +F5;

Paramatric?lot[{deltaqke [g] #1000, deltaQIm[g] » 1000}, {q, gmin, gmax}, Frame - True,
FrameLabel » {"Re ( 40 ) [107°]", "~ Im ( 4Q ) [107°]"}, GridLines - Automatic,
ImageSize - imsize, PlotRange - All, PlotStyle -» {Black, Thick}, AspectRatio - 0.6,
LabelStyle - Directive [Black, 16, Bold] ]

20+

—
n

-Im (AQ) [107]
5

Courtesy of C. Tambasco

o
n

- -

Loop also revealed in Re (4Q) (107
simulation (COMBI)
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2015

Closer look recently: why do we see a loop in the BTF and what are

its characteristics?

e e BTF Measuraments
— Semi-analytical

Courtesy of C. Tambasco

Loop also revealed in
simulation (COMBI)

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016

Mathematical description
of the BTF of a loop

deltaQRe[qg ] := (F1xCos[g] + F2xq) xF3;

deltaQIm[q ] := F4xSin[qg] +F5;

Paramatric?lot[{deltaqke [g] #1000, deltaQIm[g] » 1000}, {q, gmin, gmax}, Frame - True,
FrameLabel » {"Re ( 40 ) [107°]", "~ Im ( 4Q ) [107°]"}, GridLines - Automatic,
ImageSize - imsize, PlotRange - All, PlotStyle -» {Black, Thick}, AspectRatio - 0.6,
LabelStyle - Directive [Black, 16, Bold] ]

20+

-Im (AQ) [107%]

1 )
Re (AQ) [1073]

Next: what is the
physics?




Actions taken
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Actions taken

High chromaticities (~ 15) + ~ maximum octupole current (550 A)
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Detailed simulation campaign started to study effects of e- from
arc dipoles and quadrupoles but also from interaction regions
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Actions taken

High chromaticities (~ 15) + ~ maximum octupole current (550 A)

Detailed simulation campaign started to study effects of e- from
arc dipoles and quadrupoles but also from interaction regions
With new Injection working point, recommendation to correct
both Laslett tune shifts and closest tune approach (|C-|), to avoid
possible instabilities induced by linear coupling
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arc dipoles and quadrupoles but also from interaction regions

With new Injection working point, recommendation to correct
both Laslett tune shifts and closest tune approach (|C-|), to avoid
possible instabilities induced by linear coupling

Detailed analysis of effect of linear coupling on transverse beam
instabilities also started with a single bunch at high energy
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2015

Actions taken
High chromaticities (~ 15) + ~ maximum octupole current (550 A)

Detailed simulation campaign started to study effects of e- from
arc dipoles and quadrupoles but also from interaction regions

With new Injection working point, recommendation to correct
both Laslett tune shifts and closest tune approach (|C-|), to avoid
possible instabilities induced by linear coupling

Detailed analysis of effect of linear coupling on transverse beam
instabilities also started with a single bunch at high energy

BTF measurements started to be benchmarked

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016
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Lessons learned

While it is still not completely clear why such high values were
needed in 2012, it was clear in 2015 that an important e-cloud was

still present at high energy and that it could drive the beam
unstable
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2015

Lessons learned

While it is still not completely clear why such high values were
needed in 2012, it was clear in 2015 that an important e-cloud was

still present at high energy and that it could drive the beam
unstable

Furthermore, linear coupling should be studied in more detail
during all the LHC cycle

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016
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2016

Destabilising effect of linear coupling at 6.5 TeV => Linear coupling
can be beneficial or detrimental
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2016

Destabilising effect of linear coupling at 6.5 TeV => Linear coupling
can be beneficial or detrimental

Why could linear coupling be a problem for beam stability?

=> Because the coherent tunes are shifted by linear coupling
differently compared to the incoherent tunes (providing the
Landau damping) due to the nonlinear fields (from octupoles to

create the tune spread). Therefore in some cases a too strong
coupling can be detrimental, leading to instabilities due to a loss
of transverse Landau damping

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




Proceedings of EPAC 2002, Paris, France

DESTABILISING EFFECT OF LINEAR COUPLING
IN THE HERA PROTON RING

E. Métral, CERN, Geneva, Switzerland
G. Hoffstaetter, F. Willeke, DESY, Hamburg, Germany

Abstract

Since the first start-up of HERA in 1992, a transverse
coherent instability has appeared from time to time at the
beginning of the acceleration ramp. In this process, the
emittance is blown up and the beam is partially or
completely lost. Although the instability was found to be
of the head-tail type, and the chromaticity and linear
coupling between the transverse planes was recognized as
essential for the instability to occur, the driving
mechanism was never clarified. An explanation of the
phenomenon is presented in this paper using the coupled
Landau damping theory. It is predicted that a too strong
coupling can be detrimental since it may shift the
coherent tune outside the incoherent spectrum and thus
prevent Landau damping. Due to these features, the name
"coupled head-tail instability" is suggested for this
instability in the HERA proton ring.

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016



Proceedings of EPAC 2002, Paris, France

DESTABILISING EFFECT OF LINEAR COUPLING
IN THE HERA PROTON RING

E. Métral, CERN, Geneva, Switzerland
G. Hoffstaetter, F. Willeke, DESY, Hamburg, Germany

Abstract Simple model used

Since the first start-up of HERA in 1992, a transverse (externally given elliptical
coherent instability has appeared from time to time at the spectrum...) => Detailed

beginning of the acceleration ramp. In this process, the . -
emittance is blown up and the beam is partially or simulation study currently

completely lost. Although the instability was found to be being performed for the LHC
of the head-tail type, and the chromaticity and linear by L.R. Carver (see after)
coupling between the transverse planes was recognized as

essential for the instability to occur, the driving

mechanism was never clarified. An explanation of the

phenomenon is presented in this paper using the coupled

Landau damping theory. It is predicted that a too strong

coupling can be detrimental since it may shift the

coherent tune outside the incoherent spectrum and thus

prevent Landau damping. Due to these features, the name

"coupled head-tail instability" is suggested for this

instability in the HERA proton ring.

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016



2016

pYHEADTAIL simulations with an octupole as detuner

Ny =3ell, E=6.5TeV, Q'=7,7,=100 turns, € =2.5um

E ---  Current threshold for |C~| =0

: ¢—¢ Current threshold for |C~|=0.001
¢—¢ Current threshold for |C'~| =0.005 |
$—¢ Current threshold for |C'~|=0.01

0.015 0.020 0.025 0030 0035 0.040
Qsep Courtesy of L.R. Carver

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016



pYHEADTAIL simulations with MADX with the real octupoles
an octupole as detuner

LOF >0

‘ ¢ _‘ =0 Courtesy of L.R. Carver

et = 500A, |C7|=0,Qq. coh = 0.309873, Q) con = 0. 319891
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pYHEADTAIL simulations with MADX with the real octupoles
an octupole as detuner

LOF >0

‘ ¢ _‘ =0.002 Courtesy of L.R. Carver
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pYHEADTAIL simulations with MADX with the real octupoles
an octupole as detuner

LOF >0

‘ ¢ _‘ =0.004 Courtesy of L.R. Carver

Tune Footprint for 30 with i, =500 A, |C'~|=0.004
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pYHEADTAIL simulations with MADX with the real octupoles
an octupole as detuner

LOF >0

‘ ¢ _‘ =0.006 Courtesy of L.R. Carver

Tune Footprint for 30 with i, =500 A, |C~|=0.006

ot = 500A, |C~|=0.006, Qy. oh = 0. 308909, Q, coi, = 0. 320882
:

i ‘ 0.323
0.3240 . 0.322 0 i ....... b,
E ) : :
5955 ' 0.321 b i
. ; ]
5 : <
:_-ioazm ég _____________________________ e 0.320
2
g
0.319}
03195 \
. i
0.3075 0.3090 03105 03120 0.318 L L L L L L i i
Horizontal fractional tune 0.3080 0.3085 0.3090 0.3095 0.3100 0.3105 0.3110 0.3115 0.3120

Q:




pYHEADTAIL simulations with MADX with the real octupoles
an octupole as detuner

LOF >0

‘ ¢ _‘ =0.008 Courtesy of L.R. Carver

Goet = H00A, |C7]=0.008, Q. con =0.308259, Qy, con = 0. 321556
'

Jﬁk 0.323 _ Tune Footprint for 3¢ with i =500 A, IC”‘I =0.008
0.3240 . 0.322 L ... ....... b,
E ..-... : :
: e, *
— ; 0.32L i SRR E— ..........
. & ) : :
2 E" % <
2 (i==ecsspsssssossssssspassossssaossonsoco il csssssos o]
S
g 0.320 |
“_‘; 0.3210
2
2
s }
0.319 ¢
0.3195
03075 03090 03105 03120 0.318 - . . L - . L L
Horizontal fractional tune 0.3080 0.3085 0.3090 0.3095 0.3100 0.3105 0.3110 0.3115 0.3120

Q:




pYHEADTAIL simulations with MADX with the real octupoles
an octupole as detuner

LOF >0

‘ ¢ _‘ =001 Courtesy of L.R. Carver

et = 500A, |C7|=0.01,Q,. con = 0. 307508, Qy, con — 0. 322336

mﬂL 0.323 Tune Footprint for 3o with i,; =500 A, |C~|=0.01
0.3240 ) 0.322 | GeeTT ........................

' e L H H B
05095 :" , - 0.321 | e o

£, 28R E0000ootonboo00 000 ooobODboO S HCOOnoo DD OO D OCOCDO U0 : : :
o =
E <
g
8 0.320
< 03210
2
g

0.319}

03195

03075 03090 03105 03120 0.318 - - - L - . L L

Horizontal fractional tune 0.3080 0.3085 0.3090 0.3095 0.3100 0.3105 0.3110 0.3115 0.3120

Q:




PYHEADTAIL simulations MADX with the real octupoles
an octupole as detuner (LOF > 0, swapped tunes)
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PYHEADTAIL simulations with MADX with the real octupoles
an octupole as detuner
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PYHEADTAIL simulations with MADX with the real octupoles
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PYHEADTAIL simulations with MADX with the real octupoles
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Physical mechanism => Simple model?
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Physical mechanism => Simple model?
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See also R. Tomas et al., “Amplitude dependent closest tune
approach” (submitted to PRAB) => However, the amplitude-
dependent C- discussed before is not the same as the one in the
paper and has been deduced empirically => To be continued...
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Dedicated instability measurements in the LHC on 16/04/2016
1) During the betatron squeeze
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2016

Dedicated instability measurements in the LHC on 16/04/2016
1) During the betatron squeeze
2) At top energy (before the betatron squeeze)
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1) During the betatron squeeze: ADT on, Q' ~ 9 and LOF = + 285 A

Focusing octupoles

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




Transverse damper

1) During the betatron squeeze: ADT on, Q' ~ 9 and LOF = + 285 A
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Transverse damper

1) During the betatron squeeze: ADT on, Q' ~ 9 and LOF = + 285 A
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1) During the betatron squeeze: ADT on, Q' ~ 9 and LOF = + 285 A

Timeseries Chart between 2016-04-16 00:20:00.000 and 2016-04-16 00:40:00.000 (LOCAL_TIME)
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1) During the betatron squeeze: ADT on, Q' ~ 9 and LOF = + 285 A

Timeseries Chart between 2016-04-16 00:20:00.000 and 2016-04-16 00:40:00.000 (LOCAL_TIME)
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coupling effect!)

Instability observed with LOF = + 285 A, i.e. ~ 4 times higher
octupole current than uncoupled threshold
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2) At top energy (before the betatron squeeze)
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2) At top energy (before the betatron squeeze)

IC-| ~ 0.001 and Q___ = 0.03:
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=> Stability for LOF =+ 71 A

Courtesy of L.R. Carver
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2) At top energy (before the betatron squeeze)

|C-| ~0.001 and Q,,, = 0.03: |C-| ~0.01 and LOF =+ 310 A
=> Stability for LOF = + 71 A => Instability for Q,,, ~ 0.018

Courtesy of L.R. Carver
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This gives a factor 310 / 71 = 4.4 increase in Landau octupole
current compared to the uncoupled case

Ny =3ell, E h’.ﬁl'e*(,,)' 7,73 = 100 turns, € =2, Sum
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Courtesy of L.R. Carver
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Signs of e-cloud (?) instability in stable beam with batches of 72
bunches for Q’ ~ 15
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Signs of e-cloud (?) instability in stable beam with batches of 72
bunches for Q’ ~ 15

“Pop corn” instability
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Signs of e-cloud (?) instability in stable beam with batches of 72
bunches for Q’ ~ 15

Only vertical (B1&B2)

“Pop corn” instability
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Signs of e-cloud (?) instability in stable beam with batches of 72
bunches for Q’ ~ 15

Only vertical (B1&B2)
At the end of trains of 72 bunches

“Pop corn” instability

VERTICAL EMITTANCE VERTICAL EMITTANCE

O =N W&HEU O N

5000 10000 15000 20000 25000 30000 35000 0 5000 10000 15000 20000 25000 30000 35000

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




2016

Signs of e-cloud (?) instability in stable beam with batches of 72
bunches for Q’ ~ 15

Only vertical (B1&B2)
At the end of trains of 72 bunches
Emittance BU by a factor ~ 2

“Pop corn” instability
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2016

Signs of e-cloud (?) instability in stable beam with batches of 72
bunches for Q’ ~ 15

Only vertical (B1&B2)
At the end of trains of 72 bunches
Emittance BU by a factor ~ 2

No beam loss
“Pop corn” instability
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2016

Signs of e-cloud (?) instability in stable beam with batches of 72
bunches for Q’ ~ 15

Only vertical (B1&B2)
At the end of trains of 72 bunches
Emittance BU by a factor ~ 2

No beam loss
“Pop corn” instability

VERTICAL EMITTANCE VERTICAL EMITTANCE

O =N W&HEU O N

10000 15000 20000 25000 30000 35000 0 5000 10000 15000 20000 25000 30000 35000

=> Was cured by increasing the vertical chromaticity (+7) in
stable beam (to ~ 22)!

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016
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Courtesy of X. Buffat
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Possible mechanism? (G. ladarola and G. Rumolo)
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Since few days we have been injecting batches of 2 x 48 bunches
from the SPS instead of 1 batch of 72 bunches
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2016

Since few days we have been injecting batches of 2 x 48 bunches
from the SPS instead of 1 batch of 72 bunches

Instability in stable beam disappeared and the vertical
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2016

Actions taken
Linear coupling corrected all along the cycle and in particular
during betatron squeeze
Laslett tune shifts now corrected automatically at injection

Vertical chromaticities increased by 7 units in stable beam (to
reach values of ~ 20-25) => Almost completely suppressed
vertical emittance blow-up

Next: try and measure vertical tune shift along a batch during
stable beam to try and confirm the proposed mechanism for
beam instabilities in stable beam => Expected tune shift of the
order of 10+4...
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Lessons learned

Linear coupling has to be well corrected all along the LHC cycle
to avoid using too much octupole current

Even in the presence of a large tune spread in stable beam (due
to BBHO) the beam can become unstable

Fortunately the beam could be stabilised by increasing
considerably the vertical chromaticities (to values as high as

~ 20-25), which still leads however to sufficiently good lifetimes
=> A high chromaticity does not seem to be an issue for the

current LHC

Instabilities can also be observed during the collision (Adjust)
process with the positive sign of the Landau octupoles (to be
confirmed and studied in detail)
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FUTURE

The LHC just reached the design peak luminosity of 1034 cm=2 s-1 at
6.5 TeV and with ~25% less bunches than nominal

For HL-LHC the bunch brightness will increase by a factor ~ 3

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

Impedance-induced transverse beam instability

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

Impedance-induced transverse beam instability

SD-vs-Qp d=50 turns plane-x M2748 parabolic eps2.5um Nb2.2e11 sigmaz-0.08 Im oct-negative

I I I I

——HL-LHC 15cm 7TeV SumMo+MoC IP7 TCT5 Bl QU a Si_pa ra bol iC
(~ 3.2 0)
transverse profile

—— HLLHC 7TeV DQW 20151001 IP1-IP5

Elias Métral, HB2016 workshop, Malmé, Sweden, 05/07/2016 Courtesy of N. Biancacci




FUTURE

Impedance-induced transverse beam instability

SD-vs-Qp d=50 turns plane-x M2748 parabolic eps2.5um Nb2.2e11 sigmaz-0.08 Im oct-negative

I I I I

——HL-LHC 15cm 7TeV SumMo+MoC IP7 TCT5 Bl QU a Si_pa ra bol iC
(~ 3.2 0)
transverse profile

—— HLLHC 7TeV DQW 20151001 IP1-IP5

Baseline without
Crab Cavities

Elias Métral, HB2016 workshop, Malmé, Sweden, 05/07/2016 Courtesy of N. Biancacci




FUTURE

Impedance-induced transverse beam instability

SD-vs-Qp d=50 turns plane-x M2748 parabolic eps2.5um Nb2.2e11 sigmaz-0.08 Im oct-negative

I I I I

——HL-LHC 15c¢m 7TeV 5umMo+MoC IP7 TCT5 B1 QuaS|_pa ra bol |C
—— HLLHC 7TeV DQW 20151001 IP1-IP5 3 2
(~3.2-.0)

Baseline with transverse profile

Crab Cavities

Baseline without
Crab Cavities

Elias Métral, HB2016 workshop, Malmé, Sweden, 05/07/2016 Courtesy of N. Biancacci




FUTURE

Beam-Beam

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

Beam-Beam

[
w

B
-
RS,
+ 10
S
)
Q.
QL
wn

—03.0 —.5 -20 -15 -10 -05 00 05 1.0
Re(AQ) le-3

Elias Métral, HB2016 workshop, Malmé, Sweden, 05/07/2016 Courtesy of C. Tambasco




FUTURE

Beam-Beam

[
w

Recommendation:
gofrom2octo1o
in less than 1 s (i.e.
faster than the
predicted
instabilities)

B
-
e,
+ 10
—
©
Q
©
v

25 20 —-15 -1.0 —05 0.0
Re(AQ)

Elias Métral, HB2016 workshop, Malmé, Sweden, 05/07/2016 Courtesy of C. Tambasco




FUTURE

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

E-cloud => Huge campaign of simulations on-going

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

E-cloud => Huge campaign of simulations on-going

Try and (fully) understand the recently observed vertical
emittance blow-ups in stable beam after few hours in LHC

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

E-cloud => Huge campaign of simulations on-going

Try and (fully) understand the recently observed vertical
emittance blow-ups in stable beam after few hours in LHC

How will the LHC conditioning evolve?

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

E-cloud => Huge campaign of simulations on-going

Try and (fully) understand the recently observed vertical
emittance blow-ups in stable beam after few hours in LHC

How will the LHC conditioning evolve? Will we be able to remove
the e- from the dipoles?

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

E-cloud => Huge campaign of simulations on-going

Try and (fully) understand the recently observed vertical
emittance blow-ups in stable beam after few hours in LHC

How will the LHC conditioning evolve? Will we be able to remove
the e- from the dipoles? Effect(s) of these e- on beam stability?

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

E-cloud => Huge campaign of simulations on-going

Try and (fully) understand the recently observed vertical
emittance blow-ups in stable beam after few hours in LHC

How will the LHC conditioning evolve? Will we be able to remove
the e- from the dipoles? Effect(s) of these e- on beam stability?

Effect(s) of the e in quadrupoles on beam stability?

Elias Métral, HB2016 workshop, Malmo, Sweden, 05/07/2016




FUTURE

E-cloud => Huge campaign of simulations on-going

Try and (fully) understand the recently observed vertical
emittance blow-ups in stable beam after few hours in LHC

How will the LHC conditioning evolve? Will we be able to remove
the e- from the dipoles? Effect(s) of these e- on beam stability?

Effect(s) of the e in quadrupoles on beam stability?

Etc.
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CONCLUSION

Transverse instabilities are a concern based on the experience of the
LHC Run 1 (with 50 ns) and beginning of Run 2 (with 25 ns)

2 questions since 2012 => Why do we need (at high energy) to use

High chromaticities (~ +15 units... and even more recently...)? A known/
predicted mechanism is e-cloud at injection...

~ Max current in the Landau octupoles (max = 550 A), i.e. much more
(factor ~ 5) than predicted from impedance only?

We have identified 3 possible mechanisms (so far) which could
explain a factor ~ 5 increase in required current of Landau octupoles

Noise => Already predicted by simulations but not measured yet. 15t BTF
measurements and related Stability Diagram at injection made in 2015

Linear coupling between the transverse planes => Already predicted from
simulations and measured in MD

E-cloud => Already measured in MD/physics but simulations still to come
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