Paper | Title | Page |
---|---|---|
MOP010 | Constraints on Pulse Duration Produced by Echo-Enabled Harmonic Generation | 46 |
|
||
Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-AC02-76SF00515. Echo-enabled harmonic generation (EEHG) is well-suited for producing long, coherent pulses at high harmonics of seeding lasers. There have also been schemes proposed to adapt EEHG to output extremely short, sub-fs pulses by beam manipulations or through extremely short seed lasers, but the photon flux is generally lower than that produced by other schemes. For the standard EEHG layout, it is still interesting to consider different parameter regimes and evaluate how short a pulse can be generated. EEHG at high harmonics uses a large dispersive chicane which can change the relative distance of electrons by substantial distances, even longer than a typical FEL coherence length. We evaluate the ability to produce short pulses (in the femtosecond to 10-fs range) using a combination of theory and simulations. |
||
![]() |
Poster MOP010 [0.451 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP010 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP016 | Comparing FEL Codes for Advanced Configurations | 60 |
|
||
Various FEL codes employ different approximations and strategies to model the FEL radiation generation process. Many codes perform averaging procedures over various length scales in order to simplify the underlying dynamics. As FELs are developed in more advanced configurations beyond simple SASE, the assumptions of some codes may be called into question. We compare the unaveraged code Puffin to averaged FEL codes including a new version of GENESIS in a variety of situations. In particular, we study a harmonic lasing setup, a High-Gain Harmonic Generation (HGHG) configuration modeled after the FERMI setup, and a potential Echo-Enabled Harmonic Generation (EEHG) configuration also at FERMI. We find the codes are in good agreement, although small discrepancies do exist. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP016 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP061 | X-ray Regenerative Amplifier Free-Electron Laser Concepts for LCLS-II | 192 |
|
||
High-brightness electron beams that will drive the next generation of high-repetition rate X-ray FELs allow for the possibility of optical cavity-based feedback. One such cavity-based FEL concept is the Regenerative Amplifier Free-Electron Laser (RAFEL). This paper examines the design and performance of possible RAFEL configurations for LCLS-II. The results are primarily based on high-fidelity numerical particle simulations that show the production of high brightness, high average power, fully coherent, and stable X-ray pulses at LCLS-II using both the fundamental and harmonic FEL interactions. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP061 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUB01 | Seeding Experiments and Seeding Options for LCLS II | 219 |
|
||
We discuss the present status of FEL seeding experiments toward the soft x-ray regime and on-going studies on possible seeding options for the high repetition soft x-ray line at LCLS-II. The seeding schemes include self-seeding, cascaded HGHG, and EEHG to reach the 1-2 nm regime with the highest possible brightness and minimal spectral pedestal. We describe relevant figures of merit, performance expectations, and potential issues. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUB01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUC03 |
High-Flux, Fully Coherent X-Ray FEL Oscillator | |
|
||
Funding: The ANL part of this work is supported by the U.S. DOE Office of Science under Contract No. DE-AC02-06CH11357 and the SLAC part under contract No. DE-AC02-76SF00515. By optimizing the parameters of the accelerator, undulator, and the optical cavity, an XFELO driven by an 8-GeV superconducting linac is predicted to produce 10zEhNZeHn photons per pulse at the important photon energies around 14.4 keV.* This is an order of magnitude larger than that in previous designs.** With a BW of 3 meV (FWHM), rep rate of 1 MHz, and taking into account the full coherence, the spectral brightness is then 2×1026 photons per (mm2mr2 0.1\% BW), which is higher than any other source currently operating or anticipated in the future. Experiments at APS beam lines have shown that a high-quality diamond crystal can survive the power density (~15 kW/mm2) expected at the XFELO intra-cavity crystals preserving the high reflectivity.*** The compound refractive lenses can serve as the focusing element. Adding an XFELO to the suite of other FEL sources will, at a minor incremental cost but with a major scientific payoff, significantly expand the scientific capabilities at superconducting linac-based XFEL facilities, such as the European XFEL, the proposed LCLS-II High Energy upgrade and the XFEL project in Shanghai. * W. Qin et al., this conference. ** R.R. Lindberg et al., Phys. Rev. ST Accel. Beams, vol 14, 403 (2011). *** T. Kolodziej et al., this conference. |
||
![]() |
Slides TUC03 [4.956 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUC05 | Start-to-End Simulations for an X-Ray FEL Oscillator at the LCLS-II and LCLS-II-HE | 247 |
|
||
The proposed high repetition-rate electron beam from the LCLS-II and LCLS-II High Energy (LCLS-II-HE) upgrade are promising sources as drivers for an X-ray FEL Oscillator (XFELO) operating at both the harmonic and fundamental frequencies. In this contribution we present start-to-end simulations for an XFELO operating at the fifth harmonic with 4 GeV LCLS-II beam and at the fundamental with 8 GeV LCLS-II-HE beam. The electron beam longitudinal phase space is optimized by shaping the photoinjector laser and adjusting various machine parameters. The XFELO simulations show that high-flux output radiation pulses with 1010 photons and 3 meV (FWHM) spectral bandwidth can be obtained with the 8 GeV configuration. | ||
![]() |
Slides TUC05 [3.802 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUC05 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THB03 |
High-Power, Narrow-Bandwidth THz Generation Using Laser-Electron Interaction in a Compact Accelerator | |
|
||
We propose a method based on the slice energy-spread modulation to generate strong subpicosecond density bunching in high-intensity relativistic electron beams.* A laser pulse with periodic intensity envelope is used to modulate the slice energy spread of the electron beam, which can then be converted into density modulation after a dispersive section. In this paper, we study this method in a compact accelerator with electron energy on the order of 50 MeV. To interact with an infra-red laser, the modulation undulator is resonant with the laser at a harmonic frequency. We show the flexibility of this method to generate powerful, narrow-bandwidth radiation between 1-20 THz. The THz radiation can be generated at a very high-repetition rate that matches a high-repetition rate X-ray free-electron laser for pump-probe studies of novel materials.
* Z. Zhang et al., Phys. Rev. Accel. Beams 20, 050701 (2017). |
||
![]() |
Slides THB03 [3.539 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |