A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

beam-beam-effects

 
Paper Title Other Keywords Page
MOPLS001 Large Scale Beam-beam Simulations for the CERN LHC using Distributed Computing LHC, CERN, dynamic-aperture, simulation 526
 
  • W. Herr, E. McIntosh, F. Schmidt
    CERN, Geneva
  • D. Kaltchev
    TRIUMF, Vancouver
  We report on a large scale simulation of beam-beam effects for the CERN Large Hadron Collider (LHC). The stability of particles which experience head-on and long-range beam-beam effects was investigated for different optical configurations and machine imperfections. To cover the interesting parameter space required computing resources not available at CERN. The necessary resources were available in the LHC@home project, based on the BOINC platform. At present, this project makes more than 40000 hosts available for distributed computing. We shall discuss our experience using this system during a simulation campaign of more than six months and describe the tools and procedures necessary to ensure consistent results. The results from this extended study are presented and future plans are discussed.  
 
MOPLS045 Achieving a Luminosity of 1034/cm2/s in the PEP-II B-factory luminosity, injection, electron, positron 643
 
  • J. Seeman, J. Browne, Y. Cai, W.S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, A. Novokhatski, V. Pacak, M.T.F. Pivi, C.H. Rivetta, M.C. Ross, P. Schuh, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, W. Wittmer, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA, Gif-sur-Yvette
  For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has exceeded 1x1034/cm2/s and has delivered an integrated luminosity of 728/pb in one day. PEP-II operates in continuous injection mode for both beams, boosting the integrated luminosity. The peak positron current has reached 2.94 A and 1.74 A of electrons in 1732 bunches. The total integrated luminosity since turn on in 1999 has reached over 333/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.  
 
WEOFI01 Beam Dynamics Measurements in the Vicinity of a Half-integer Resonance betatron, emittance, resonance, radiation 1902
 
  • T. Ieiri, J.W. Flanagan, H. Fukuma, H. Ikeda, Y. Ohnishi, K. Oide, M. Tobiyama
    KEK, Ibaraki
  The operating point of the betatron tune set near a half-integer is a crucial parameter to make high luminosity in electron/positron ring colliders. Dynamic beam-beam effects would change the optics parameters of the colliders, depending on the betatron tune and the beam-beam parameter. On the other hand, existence of the half-integer stopband makes the beam unstable. Therefore, beam behavior near a half-integer might provide interesting issues from the viewpoint of beam dynamics. We measured a frequency response of the beam across a half-integer for measuring the betatron tune at KEKB. A sharp spike just at a half-integer was observed in the tune spectrum. We believe that the spectrum would be a nonlinear resonance caused by some off-momentum particles in a bunch, not by a coherent motion of a whole bunch. The horizontal beam size measured using a synchrotron radiation monitor indicated a slight increase when the tune approached a half-integer. The variations in the beam size are discussed, considering both dynamic beam-beam effects and a beta beat due to the half-integer stopband.  
slides icon Transparencies
 
WEPCH044 Interaction Region with Slim Quadrupoles quadrupole, LHC, luminosity, interaction-region 2014
 
  • E. Laface, R. Ostojic, W. Scandale, D. Tommasini
    CERN, Geneva
  • C. Santoni
    Université Blaise Pascal, Clermont-Ferrand
  An optical performance's improvement of the interaction region can be obtained with the addition of new quadrupoles in the forward detectors area. Such scenario would allow decreasing the $β*$ below the nominal value. The basic concept consists in using quadrupoles to break the quadratic behavior of $β$ in the free space between the IP and the IR triplets. In this new configuration we present the performance improvements and the hardware requirements.  
 
WEPCH094 An Early Beam Separation Scheme for the LHC luminosity, LHC, separation-scheme, dipole 2134
 
  • J.-P. Koutchouk, G. Sterbini
    CERN, Geneva
  The high nominal luminosity of the LHC requires a large number of bunches spaced by about 7.5 m. To prevent more than one head-on collision in each interaction region, a crossing angle of 0.285 mrad is necessary. A side effect of this crossing angle is the increase of the effective transverse beam cross-section, thereby decreasing the luminosity by some 16%. For the LHC upgrade, depending on the focusing scenarios, this loss significantly increases and largely offsets the potential gain of a stronger focusing. In this paper we analyze a strategy to circumvent this difficulty, based an early beam separation using small dipoles placed at a few meters from the interaction point, deep inside the detectors. This allows quasi co-linear head-on collisions at the crossing point only. From the beam dynamics point of view, the essential constraint is to control the long-range beam-beam interactions in a scenario where the normalized beam separation is not constant. In this paper the criteria of the analysis and the performance improvement obtained with the scheme are discussed. The strength of the dipoles is estimated as well as the impact on the detectors structure.