A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Fujimoto, T.

Paper Title Page
MOPCH088 Ion Cooler Storage Ring, S-LSR 237
 
  • A. Noda, S. Fujimoto, M. Ikegami, T. Shirai, H. Souda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • H. Fadil, M. Grieser
    MPI-K, Heidelberg
  • T. Fujimoto, S.I. Iwata, S. Shibuya
    AEC, Chiba
  • I.N. Meshkov, I.A. Seleznev, A.V. Smirnov, E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
 
  Ion cooler and storage ring, S-LSR has been constructed. Its beam commissioning has been successfully performed since October, 2005 and electron beam cooling for 7 MeV proton beam has been performed with both flat and hollow spatial distributions. Effect of relative velocity sweep between electron and ion beams on the cooling time* has been confirmed. Based on the success to create the peaks in the energy spectrum of laser-produced ions, injection of laser-produced ions into S-LSR after rotation in the longitudinal phase space by an RF cavity synchronized to the pulse laser is under planning in order to apply electron cooling for such real laser produced hot ions. Three dimensional laser cooling satisfying the condition of 'tapered cooling' is also under investigation. 24Mg+ ions are to be laser-cooled only in the 'Wien Filter' in order to be cooled down to the appropriate energy according to their horizontal positions**. In parallel with the computer simulation, construction of the laser cooling system with use of ring dye laser accompanied with the second harmonics generator is now underway.

*H. Fadil et al. Nucl. Instr. & Meth. in Phys. Res. A517, 1-8 (2004).**A. Noda and M. Grieser, Beam Science and Technology, 9, 12-15 (2005).

 
TUPLS064 Design and Commissioning of a Compact Electron Cooler for the S-LSR 1639
 
  • H. Fadil, S. Fujimoto, A. Noda, T. Shirai, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Fujimoto, S.I. Iwata, S. Shibuya
    AEC, Chiba
  • M. Grieser
    MPI-K, Heidelberg
  • K. Noda
    NIRS, Chiba-shi
  • I.A. Seleznev, E. Syresin
    JINR, Dubna, Moscow Region
 
  The ion cooler ring S-LSR has been constructed and commissioned in October 2005. The ring successfully stored a 7 MeV proton beam. The S-LSR is equipped with a compact-electron cooler which has a cooling solenoid length of 0.8 m, a toroid bending radius of 0.25 m and maximum magnetic field in the cooling section of 0.5 kG. The commissioning of the electron cooler was carried out with successful observation of both longitudinal and horizontal cooling of the proton beam. By varying the electric potential on the Pierce electrode in the gun, we have investigated the possibility of generating a hollow shaped electron beam, and studied its effect on the electron cooling process. Also the effect of the electrostatic deflector, installed in the toroid section in order to compensate the drift motion of the secondary electrons, was investigated. The design and results of the commissioning of the compact electron cooler are presented.  
TUPLS065 Beam Commissioning of Ion Cooler Ring, S-LSR 1642
 
  • T. Shirai, S. Fujimoto, M. Ikegami, A. Noda, H. Souda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • H. Fadil
    MPI-K, Heidelberg
  • T. Fujimoto, H. Fujiwara, S.I. Iwata, S. Shibuya
    AEC, Chiba
  • I.N. Meshkov, I.A. Seleznev, A.V. Smirnov, E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
 
  S-LSR is a new ion cooler ring constructed in Kyoto University. The circumference is 22.557 m and the maximum magnetic rigidity is 1 Tm. The constructiion and the vacuum baking had been finished in September, 2005. The beam commissioning was started since October, 2005. The injected beam is 7 MeV proton from the existing linac. The beam circulation test and the electron beam cooling were carried out successfully and the beam information and the characteristics of the ring were measured. One of the subjects of S-LSR is a realization of the crystalline beams using the electron and laser cooling. The lattice of S-LSR was designed to suppress the beam heating as much as possible and we also present such measurement results in this paper.  
WEPCH169 Alternating Phase Focused IH-DTL for Heavy-ion Medical Accelerators 2328
 
  • Y. Iwata, T. Fujisawa, T. Furukawa, S. H. Hojo, M. Kanazawa, N. M. Miyahara, T. Murakami, M. Muramatsu, K. Noda, H. Ogawa, Y. S. Sakamoto, S. Yamada, K. Yamamoto
    NIRS, Chiba-shi
  • T. Fujimoto, T. Takeuchi
    AEC, Chiba
  • T. Mitsumoto, H. Tsutsui, T. Ueda, T. Watanabe
    SHI, Tokyo
 
  Tumor therapy using HIMAC has been performed at NIRS since June 1994. With the successful clinical results over more than ten years, a number of projects to construct these complexes have been proposed over the world. Since existing heavy-ion linacs are large in size, the development of compact linacs would play a key role in designing compact and cost-effective complexes. Therefore, we developed an injector system consisting of RFQ and Interdigital H-mode (IH) DTL having the frequency of 200 MHz. The injector system can accelerate carbon ions up to 4.0 AMeV. For the beam focusing of IH-DTL, the method of Alternating Phase Focusing (APF) was employed. With the IH structure and rather high frequency, the cavity size is compact; the radius is 0.4 m, and lengths of RFQ and IH-DTL are 2.5m and 3.5m respectively. The fabrication of RFQ was completed, and we succeeded to accelerate carbon ions with satisfactory performances. For IH-DTL, the full-scale model was first fabricated. With the encouraging result* of its electric field measurement, we constructed IH-DTL and beam acceleration tests will be performed in March 2006. We will present the performances of the entire injector system.

*Y. Iwata et al., Nucl Instr. & Meth in Phys. Res. A (submitted).