Paper | Title | Page |
---|---|---|
MOAO02 | The Commissioning of a 230 MeV Superconducting Cyclotron CYCIAE-230 | 15 |
|
||
There are very strong demands for proton accelera-tors in medium energy range in recent years due to the fast growth of proton therapy and the space science in China. For the applications of proton therapy and pro-ton irradiation, the energy range of proton beam is usually from 200MeV to 250MeV, or even higher for astronavigation [1]. An R&D project for constructing a 230MeV superconducting cyclotron (CYCIAE-230) has been initiated at China Institute of Atomic Energy (CIAE) since Jan 2015. In July of 2016, after the fund-ing was approved by China National Nuclear Corpora-tion (CNNC), the construction project was fully launched. In Dec 2019, the superconducting main magnet and the RF system were transferred to the new-ly built commissioning site. Then, the RF commission-ing, ion source and central region test were performed even during the pandemic in early 2020. In September 2020, after finishing the commissioning tests of all subsystems, the beam was reached the extraction channel but with very low efficiency. Since then, with more efforts on beam diagnostics, the fine tuning of the beam phase and the adjusting of the superconduct-ing coil have been proven to be useful to get higher beam extraction efficiency ~55%. In this paper, the commissioning of the key components, including the main magnet, SC coils, internal ion source and central region, extraction system, etc, as well as the commis-sioning progress of the machine CYCIAE-230 will be presented. | ||
![]() |
Slides MOAO02 [10.305 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-MOAO02 | |
About • | Received ※ 24 January 2023 — Revised ※ 25 January 2023 — Accepted ※ 09 February 2023 — Issue date ※ 10 June 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPO007 | The Design and Commission of Vacuum System for CYCIAE-230 Superconducting Cyclotron | 66 |
|
||
In this paper, the design and installation CYCIAE-230 superconducting cyclotron main vacuum system’s equipment and the cryogenic systems based on the liquid helium zero-boiling-off technology for the CYCIAE-230 superconducting cyclotrons are described. The vacuum in the particle acceleration cavity is 2x10-4 Pa. The main technical features of the accelerator vacuum system are that the main magnet cover plate with diameter 3.12m are used as a part of the main vacuum chamber, 8 magnetic poles, 8 high frequency resonators, and 2 sets of striper targets and 2 sets of radial targets are installed in the main vacuum chamber, resulting in technical difficulties such as large surface gas discharge, virtual leakage, high leakage of magnetic flux at the installation position of vacuum equipment (up to 2000 gauss) and so on. The main vacuum system is designed as 9 sets of TMP with magnet shields installed on the valley of magnet poles, which also used as RF cavity. | ||
![]() |
Poster MOPO007 [1.509 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-MOPO007 | |
About • | Received ※ 06 February 2023 — Revised ※ 07 February 2023 — Accepted ※ 03 August 2023 — Issue date ※ 12 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPO001 | Field Matching of F-D-F, Gap Shaping Magnets for a 2 GeV CW FFA | 200 |
|
||
Funding: Work supported by the National Natural Science Foundation of China under Grant 12135020 and the basic research fund from the Ministry of Finance of China under Grant BRF201901. Fixed Field Alternating Gradient Accelerators have been developed for decades. A continuous wave (CW) 2 GeV FFA which aims at high-power proton beam applications is under developing in China Institute of Atomic Energy (CIAE). To avoid dangerous resonance lines and manipulate the tune diagram flexibly, 3rd order magnetic field is applied along the radius and 10-fold symmetrical F-D-F scheme has been proved to be feasible. In this paper, Integral Equation Method (IEM) is introduced and shown more efficient than adjusting the variable gap manually, saving time for magnet design. First of all, the radial mean field is set as a main design goal and the Δ H at different radii is solved by linear equations based on IEM. The isochronism is done when the mean field is well matched with the design value, whereas some precise corrections are needed for the oscillating frequency Vr and Vz, such as fringe field effects and multipole components near the end of pole face. The tune shift caused by fringe field is also included in this paper. Fringe field is more crucial for HTS magnets especially, since the leaked field of superconducting coil is ~1 kGs. Considering that, we apply an angular matching method to compensate the tune shift by fringe field. |
||
![]() |
Poster WEPO001 [3.442 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-WEPO001 | |
About • | Received ※ 30 December 2022 — Revised ※ 28 January 2023 — Accepted ※ 09 February 2023 — Issue date ※ 12 June 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THAI01 | Recent Progress of Research and Development for the Cost-Effective, Energy-Efficient Proton Accelerator CYCIAE-2000 | 245 |
|
||
Funding: This work was supported in part by the National Natural Science Foundation of China under Grant 12135020 and the basic research fund from the Ministry of Finance of China under Grant BRF201901. The MW class proton accelerators are expected to play important role in many fields, attracting institutions to continue research and tackle key problems. The CW isochronous accelerator obtains a high power beam with higher energy efficiency, which is very attractive to many applications. Scholars generally believe that the energy limitation of the isochronous cyclotron is ~1 GeV. To get higher beam power by the isochronous machine, enhancing the beam focusing become the most important issue. Adjusting the radial gradient of the average magnetic field makes the field distribution match the isochronism. When we adjust the radial gradient of the peak field, the first-order gradient is equivalent to the quadrupole field, the second-order, the hexapole field, and so on. Just like the synchrotron, there are quadrupoles, hexapole magnets, and so on, along the orbits to get higher energy, as all we know. If we adjust the radial gradient for the peak field of an FFAG’s FDF lattice and cooperate with the angular width (azimuth flutter) and spiral angle (edge focusing) of the traditional cyclotron pole, we can manipulate the working path in the tune diagram very flexibly. During enhancing the axial focusing, both the beam intensity and the energy of the isochronous accelerator are significantly increased. And a 2 GeV CW FFAG with 3 mA of average beam intensity is designed. It is essentially an isochronous cyclotron although we use 10 folders of FDF lattices. The key difficulty is that the magnetic field and each order of gradient should be accurately adjusted in a large radius range. As a high-power proton accelerator with high energy efficiency, we adopt high-temperature superconducting technology for the magnets. 15 RF cavities with a Q value of 90000 provide energy gain per turn of ~15 MeV to ensure the CW beam intensity reaches 3 mA. A 1:4 scale, 15 ton HTS magnet, and a 1:4 scale, 177 MHz cavity have been completed. The results of such R&D will also be presented in this |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-THAI01 | |
About • | Received ※ 20 January 2023 — Revised ※ 24 January 2023 — Accepted ※ 09 February 2023 — Issue date ※ 04 April 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |