JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
TY - CONF AU - Fu, W.F. AU - Bian, T.J. AU - Wang, C. AU - Zhang, S.P. AU - Zhang, T.J. AU - Zhou, H. AU - Zhu, X.F. ED - Zhang, Tianjue ED - Schaa, Volker R.W. ED - An, Shizhong ED - Kiselev, Daniela ED - Liu, Yuntao ED - Li, Pengzhan TI - Field Matching of F-D-F, Gap Shaping Magnets for a 2 GeV CW FFA J2 - Proc. of CYCLOTRONS2022, Beijing, China, 05-09 December 2022 CY - Beijing, China T2 - International Conference on Cyclotrons and their Applications T3 - 23 LA - english AB - Fixed Field Alternating Gradient Accelerators have been developed for decades. A continuous wave (CW) 2 GeV FFA which aims at high-power proton beam applications is under developing in China Institute of Atomic Energy (CIAE). To avoid dangerous resonance lines and manipulate the tune diagram flexibly, 3rd order magnetic field is applied along the radius and 10-fold symmetrical F-D-F scheme has been proved to be feasible. In this paper, Integral Equation Method (IEM) is introduced and shown more efficient than adjusting the variable gap manually, saving time for magnet design. First of all, the radial mean field is set as a main design goal and the Δ H at different radii is solved by linear equations based on IEM. The isochronism is done when the mean field is well matched with the design value, whereas some precise corrections are needed for the oscillating frequency Vr and Vz, such as fringe field effects and multipole components near the end of pole face. The tune shift caused by fringe field is also included in this paper. Fringe field is more crucial for HTS magnets especially, since the leaked field of superconducting coil is ~1 kGs. Considering that, we apply an angular matching method to compensate the tune shift by fringe field. PB - JACoW Publishing CP - Geneva, Switzerland SP - 200 EP - 203 KW - FEM KW - focusing KW - FFAG KW - lattice KW - proton DA - 2023/10 PY - 2023 SN - 2673-5482 SN - 978-3-95450-212-7 DO - doi:10.18429/JACoW-CYCLOTRONS2022-WEPO001 UR - https://jacow.org/cyclotrons2022/papers/wepo001.pdf ER -