Author: Dou, G.L.
Paper Title Page
WEAO02 Simulation and Analysis of HIMM-IC Beam Dynamics with OPAL 152
 
  • G.L. Dou
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Since 2020, HIMM (Heavy Ion Medical Machine) facilities in both Wuwei and Lanzhou cities have been installed and put into clinical application or commissioning experiments. As an injector cyclotron (IC), HIMM-IC can provide 6.8 MeV/10 eµA 12C5+ beam for the synchrotron. Nevertheless, in terms of better beam quality and operation efficiency, HIMM-IC design still has a lot of room for improvement. We used OPAL simulation program to complete the 3D multi-particle dynamics simulation of HIMM-IC including the space charge effect. And the results show that it is in good agreement with the actual experimental measurements.  
slides icon Slides WEAO02 [3.819 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-WEAO02  
About • Received ※ 29 December 2022 — Revised ※ 12 January 2023 — Accepted ※ 01 February 2023 — Issue date ※ 07 February 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBI02 Status Report on the Cyclotron Injector for HIMM 269
 
  • G.L. Dou, X. Chen, C.C. Li, L.T. Sun, B. Wang, X.W. Wang, L. Yang, Q.G. Yao, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  HIMM (Heavy Ion Medical Machine) is an accelerator complex designed by Institute of Modern Physics, CAS, which accelerates carbon ions to the energy 400 MeV/A for tumor therapy. The main accelerator of HIMM is a synchronous accelerator. As a special design, we use a cyclotron as the injector of the synchrontron. The cyclotron is a compact cyclotron to accelerate C125+ ions to the energy 6.8 MeV/A, and the extracted beam intensity of the cyclotron is 10 eµA. For stability and simplicity operation, we use two identical permanent magnet ECR ion sources in the axial injection line, that the ion sources can interchange with each other rapidly with the same performance, and only one main exciting coil with no trim coils in the cyclotron magnet. Up to now, three cyclotrons have been accomplished, one of them was operated in Gansu Wuwei Tumor Hospital to treat more than six hundred cancer patients in the last two and a half years, the other one had been fully commissioned in Lanzhou Heavy Ion Hospital about two years ago. After a short introduction to the heavy ion cancer treatment facility development in China, this paper will present operation status of the cyclotrons for HIMM. Typical performance and on-line operation reliability will be discussed.  
slides icon Slides THBI02 [2.031 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-THBI02  
About • Received ※ 07 December 2022 — Revised ※ 24 July 2023 — Accepted ※ 03 August 2023 — Issue date ※ 13 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRBO02
Simulation Study of Inflector for High Intensity Ion Beam Injection  
 
  • X. Chen, G.L. Dou, L.T. Sun, B. Wang, X.W. Wang, Q.G. Yao, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Compact cyclotron for isotope production has received wide attention around the world, especially those of high beam intensity. When ion beam enters the cyclotron acceleration system, it needs to pass through the spiral inflector in the axial injection system to deflect the beam by 90° to make it reach the acceleration plane. However, the space charge effect and beam loss that occur in the high-current compact cyclotron make the design of the spiral inflector a big challenge. We used CST and COMSOL to simulate the injection of H2+ particles with an energy of 80 keV into a compact cyclotron from RFQ. Python was used to calculate the spiral inflector model data, and the VBA module of CST was used to establish the 3D mirror model. This will provide a reliable solution for the design and optimization of high-current compact cyclotron.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)