

Simulation and analysis of HIMM-IC beam dynamics with OPAL

G. L. Dou^{1,2}, B. Wang¹, X. Chen^{1,2}, X. W. Wang¹, Q. G. Yao¹, L. Yang¹, C. C. Li¹, L. T. Sun^{1,2} and H. W. Zhao^{1,2}

¹ Institute of Modern Physics, Chinese Academy of Sciences
² School of Nuclear Science and Technology, University of Chinese Academy of Sciences

Background

- Operation status and problems
- Simulation of Beam dynamics in OPAL
- Summary and Outlook

Background

Schematic view of HIMM

• 2 ECR ion sources

- ~7MeV/u Cyclotron
- 120-400 MeV/u Synchrotron
- 4 Treatment terminals
- 5 fixed irradiation ports
- Maximum particle number in the terminal (ppp) : 1.2E9

Background

HIMM-IC

- Compact Cyclotron
- No Trimming coils
- 2.92m Diameter
- ~7 MeV/u 10 μA ¹²C⁵⁺
- 4 straight edge Sectors
- Bc@1.212T Bmax@1.732T
- 2 RF resonators@31.02MHz
- Emax@70kV

Operation status and problems

■Operation status^{*,1}

Year	Operation Time(h)	Breakdown Time(h)	Operation efficiency
2022	7296	31.62	99.57%
2021	7536	66.05	99.12%
2022	6936	54.15	99.22%

HIMM-IC Operation status

Maximum Beam Current(CW)

*THBI2 Status Report on the Cyclotron Injector for HIMM@Bing Wang(IMP, CAS) ¹Operation of HIMM-IC in Wuwei@LANZHOU ION THERAPY CO., LTD

Operation status and problems

Operation status

Parameter	Value	
Energy	~7MeV/u	
Beam Current	$\geq 10 \mu A (^{12}C^{5+})$	
Dispersion of momentum $(\delta P/P)$	≤0.5%	
Emittance	$\leq 25 \pi \cdot \text{mm} \cdot \text{mrad}(5\sigma)$	

HIMM-SYN Injection beam quality requirements²

¹Operation of HIMM-IC in Wuwei@LANZHOU ION THERAPY CO. ,LTD ²Design and Development of a 7MeV/u heavy Ion Cyclotron@Huanfeng Hao(CIRP)

HIMM Steady Operation Beam Current¹

Transmission

Measurement Intensity and transmission

¹Operation of HIMM-IC in Wuwei@LANZHOU ION THERAPY CO.,LTD ³Computer Design of a Compact Cyclotron(2012,PPNL)@Bing Wang(IMP,CAS)et.al

Jochem Snuverink (PSI) · Daniel Winklehner (MIT) - 2021-10-21

ristof Metzger-Kraus · Nicole Neveu (SLAC) · Chris Rogers (RAL) · Steve Russell (LANL) · Suzanne Sheehy (Oxford)

23rd International Conference on Cyclotrons and Applications

Analysis of Isochronous magnetic field

- •Static Equilibrium Orbit
- •Tune Calculation
- Simulation of Acceleration(central region + accelerate region)
 - •Single Particle
 - Multi-particles
- Simulation of Extraction System(still modeling)

Simulations of beam dynamics

Analysis of Isochronous magnetic field

CYC2022

⁴DESIGN AND CONSTRUCTION PROGRESS OF A 7MEV/U CYCLOTRON(2010, CYC2010)@Bing Wang et.al Measurement Bz Map

Analysis of Isochronous magnetic field

•Static Equilibrium Orbit

Analysis of Isochronous magnetic field

•Tune Calculation

Tune Calculation of Nu_z and Nu_r

Tune Diagram

Simulations of beam dynamics

77 turn@0.1122-84.971MeV Acceleration Orbit(Single Particle) dR(77)~5mm • ● 3D RF E-fields dE(average)~1.2MeV • ● 2D Measurement B-fields E/MeV - R/mm Orbit dE/Me - dR/mm **@5mm** @1.2MeV 500 40 1.2600 o. o dE/MeV dR/mm y/mm 400 20 0.8 200 20 -500 0.6 20 60 80 20 40 40 60 80 -500 500 Turn Turn x/mm

Acceleration Orbit

R-dR & E-dE

Simulations of beam dynamics

■Acceleration Orbit(Multiparticle)

Extraction System(still modeling)

Some tips:

- OPAL-cycl
- Element: Collimator or Septum
- Polyline construction
- 3D E-fields and 2D B-fields

Sechamtic of HIMM-IC

Summary

- Isochronous and focusing of B-field is good;
- Transverse emittance in good agreement with SNOP;
- Acceleration transmission in good agreement with experimental data;
- Problems: big radial emittance and small turn separation.
- Outlook
 - Modeling of extraction system;
 - End to end simulation.

Thanks for your attention!

Acknowledgement:

- PSI OPAL Group. @Dr. Andreas Adelmann, Dr. Hui Zhang, Dr. Pedro Calvo Portela, Dr. Daniel Winklehner, et al.
- CIAE. @Dr. Tianjian Bian, CIRP. @Dr. Huanfeng Hao, CNNC. @Dr. Jianjun Yang