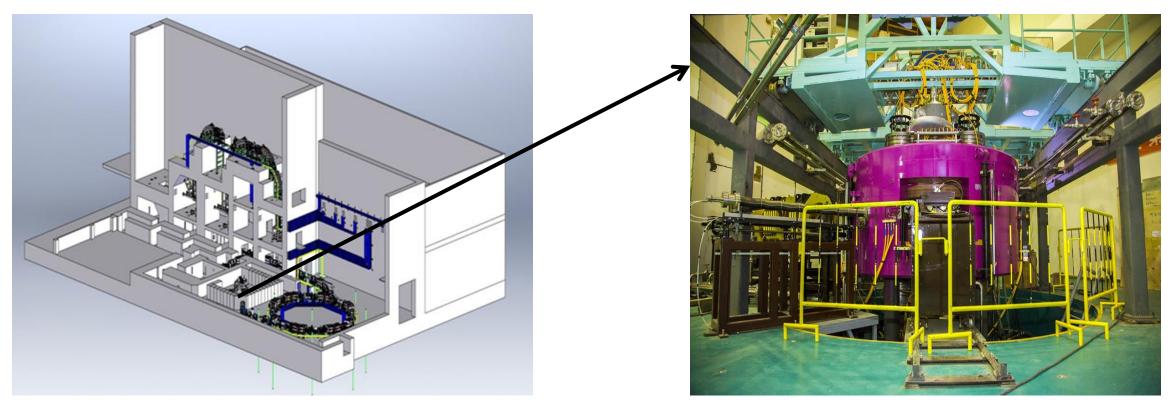


Status Report on the Cyclotron Injector for HIMM

Bing Wang

Institute of Modern Physics, Chinese Academy of Sciences (IMP)


The 23nd International Conference on Cyclotrons and their Applications

OUTLINE

- 1. Introduction
- 2. Characteristics of the Cyclotron
- 3. Manufactures and Operations
- 4. Summary

Introduction

HIMM (Heavy Ion Medical Machine) is an accelerator complex designed by Institute of Modern Physics, CAS. HIMM accelerates carbon ions to the energy 400 MeV/A for tumor therapy.

Layout of HIMM

Cyclotron Injector

1. Introduction

Cyclotron is used as the injector of the main accelerator (synchrontron), the unique design in the worldwide heavy ion therapy facilities.

Machine	Country	lon	Energy(MeV/U),main accelerator	Injector
Med-AUSTRON	Austria	Carbon	400, Synchrontron	Linac
CNAO	Italy	Carbon	400, Synchrontron	Linac
ніт	Germany	Carbon	430, Synchrontron	Linac
РТС	Germany	Carbon	430, Synchrontron	Linac
NRoCK	Germany	Carbon	430, Synchrontron	Linac
GUNMA	Japan	Carbon	400, Synchrontron	Linac
HIMAC	Japan	Silicon	800, Synchrontron	Linac
HIBMC	Japan	Carbon	320, Synchrontron	Linac
SAGA-HIMAT	Japan	Carbon	400, Synchrontron	Linac
НІММ	China	Carbon	400, Synchrontron	Cyclotron
Fudan University	China	Carbon	430, Synchrontron	Linac

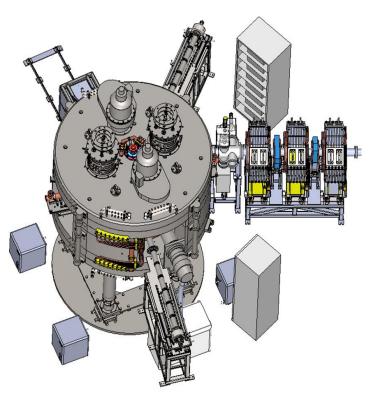
1. Introduction

Three HIMMs have been constructed in China. The HIMM in Gansu Wuwei Tumor Hospital has treated more than six hundred cancer patients in the last two and a half years.

- ✓ Cyclotron extracted beam intensity: 5.5μ A(CW)
- ✓ Beam intensity in sychrontron: 2000µA(pulsed)
- ✓ Beam Intensity on treatment terminals: 4×10⁸ ppp

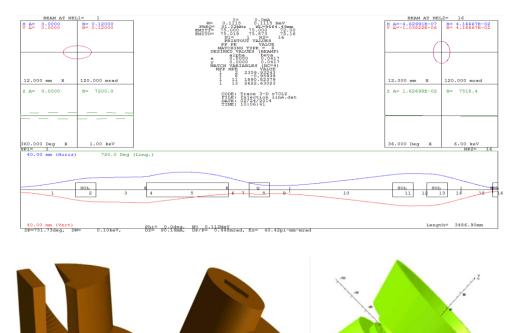
Beam intensity in sychrontron

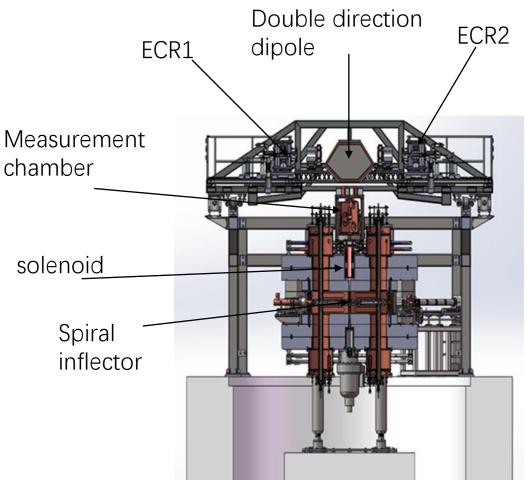
Gansu Wuwei Tumor Hospital


Lanzhou Heavy Ion Hospital

2. Characteristics of the Cyclotron

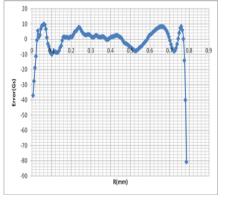
The cyclotron injector is a compact cyclotron. It is used for medical treatment. We focused on the stability and simplicity of the cyclotron in design and manufacture phase.

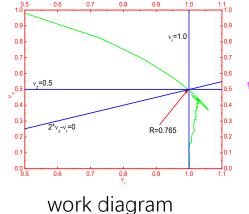

Ion	C ₁₂ ⁵⁺	rf frequency	31.02MHz
Energy	6.8 MeV/A	Harmonic	4
Beam intensity	10 eµA	rf cavities	2
Beam Emittance	$20-25\pi$ mm.mrad	Ion source	2 ECR+axial injection line
Energy divergence	±1%	Extraction	1 ESD+1 BUMP+1 GCC+1MC
Central magnet field	1.212 T	Magnet Size	Φ2920mm*1520mm
Magnet sectors	4		
Sector angle	56°		
Pole radius	84cm		
Extraction radius	75cm		

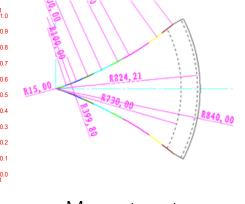

The Main Parameters of Cyclotron

2. Characteristics of the Cyclotron (ion source, axial injection line)

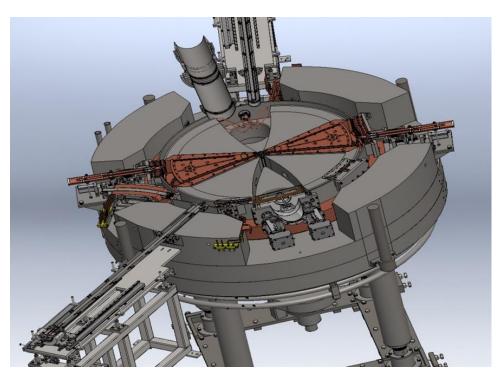
✓ Two permanent magnet ECR ion sources ✓ Short beam line, 3.5m long ✓ Mult-harmonic Bucher



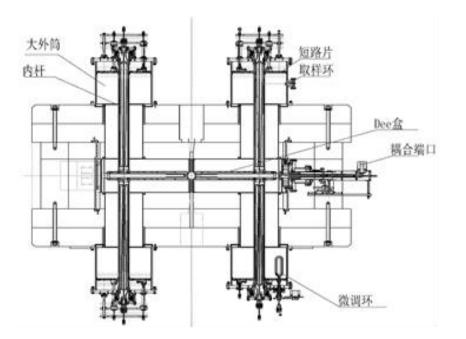

2. Characteristics of the Cyclotron (magnet)

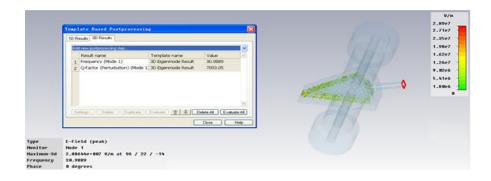

None isochronous trim coils in the cyclotron Trim the magnet sector's edge, optimum the sector's gap

Central magnet field	1.212 T	
Magnet sectors	4	
Sector angle	56°	
Pole radius	84cm	
Hill gap	70-80mm	
Valley gap	360mm	



Magnet field error

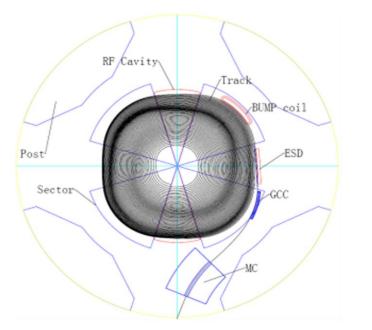


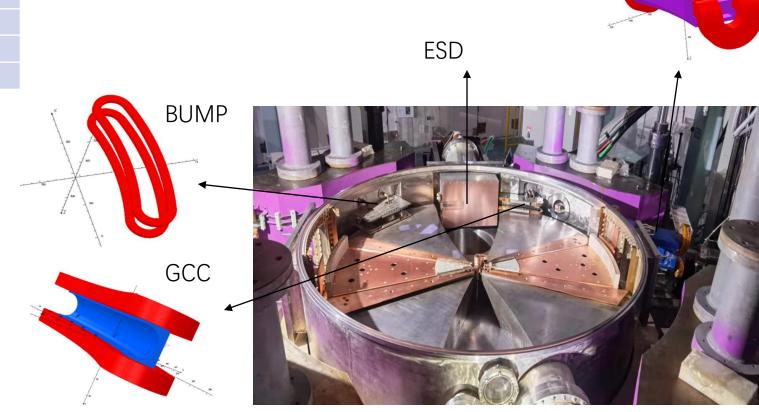


2. Characteristics of the Cyclotron (rf system)

✓ High stability of the cavity amplitude, phase, frequency

rf frequency	31.02MHz	
Dee voltage	70KV	
Dee angle	30°	
Cavity number	2	
Outer radius	750mm	
Inner radius	35mm	
Phase stability	±1°	
Amplitude stability	±5×10 ⁻⁴ /24hour	
Frequency stability	±1×10 ⁻⁶ /24hour	
Q value	7800	
Amplifier number	2	
Amplifier power	50kw	

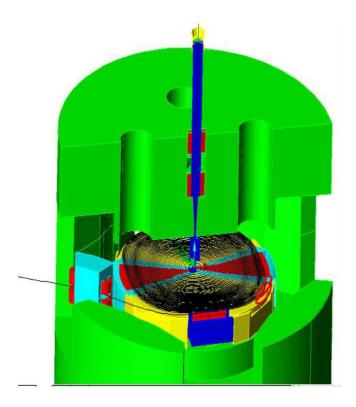




2. Characteristics of the Cyclotron (extraction)

✓The elements of extraction system as less as possible.

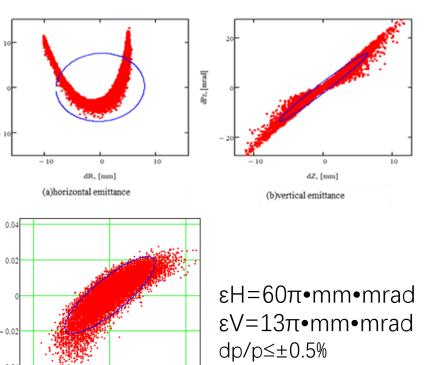
ESD E field	80-85 kv/cm
ESD Gap	10 mm
Bump B field	300 Gauss
GCC G field	10 T/m
MC B field	1.1 T
Turn separation	10 mm



MC

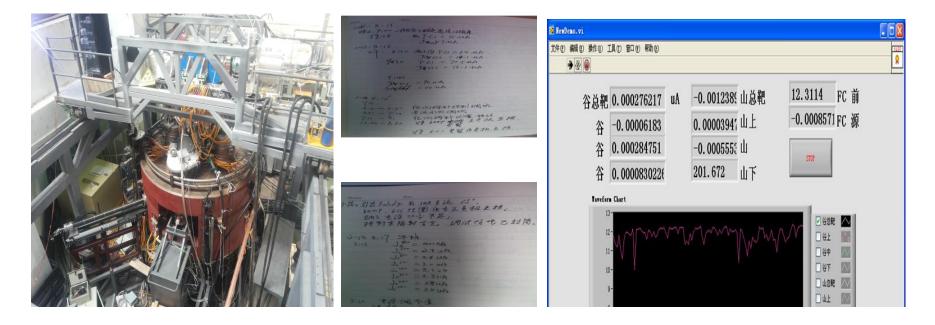
2. Characteristics of the Cyclotron (beam simulation)

 Simulate beam transport from ion source to match point to the middle energy beam line.


Transmission efficiency

Emittance of ECR	75 πmm.mrad
ECR beam intensity	100 eµA
Efficiency of beam line	90%
Efficiency of injection	43%
Efficiency of extraction	47%
Total transmission efficiency	18%

E, [MeV/u]

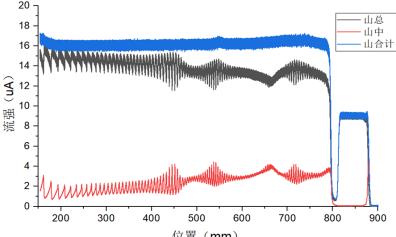

dPhi RF, [deg RF]

Extracted beam emittance on the match point

3. Manufactures and Operations

✓ The design phase: 2006-2011
✓ The first cyclotron installed in IMP: 2014.8
✓ The first trimming cyclotron: 2014.8.15
✓ The first extracted beam: 2014.8.16, 1nA beam extracted
✓ The extracted beam intensity to be 12 µA: 2014.9.26

3. Manufactures and Operations


The first cyclotron installed in Gansu Wuwei Tumor Hospital in 2015
 On April 1, 2020, they began to treat patients

✓ More than 600 patients have been treated in the hospital

Scheme	Operation time(h)	Failure time(h)	Operating rate
March 26, 2020 - January 23, 2021	7296	31.62	99.57%
March 22, 2021- January 29, 2022	7536	66.05	99.12%
February 16, 2022- August 22, 2022	6936	54.15	99.22%

10FC01	50 еµА
Central region	19.2 eµA
Extraction region	18.94 eµA
30FC01	5.5 eµA
Efficiency of injection	38.4%
Efficiency of extraction	29%
Total transmission	11%
efficiency	

3. Manufactures and Operations

- The second cyclotron has been completely installed in Lanzhou Heavy Ion Hospital, Lanzhou city, Gansu province, China, in 2017
- ✓The third cyclotron has been completely installed in Mazu Heavy Ion Hospital, Putian City, Fujian province, China, in 2020
- ✓ These two cyclotrons have not been used for treatment

4. Summary

 The cyclotron can be stably and reliably used as injector of sychrontron for heavy ion therapy

✓The design of the cyclotron injector for HIMM is feasible

The total transmission efficiency of the cyclotron injector and the extracted beam quality should be improved to better match the sychrontron.

Members

Cyclotron

Liangting. Sun, Qinggao. Yao, Xianwu. Wang, Jinquan. Zhang, Mingtao. Song, Hongwei. Zhao (Institute of Modern Physics, CAS)

Jian. Si, Lirong. Zhou (Lanzhou Ion Therapy Co., Ltd.)

Thanks you for your attentions!