Author: van der Horst, B.
Paper Title Page
MOPB075 Experiences on Retreatment of EU-XFEL Series Cavities at DESY 296
 
  • A. Matheisen, N. Krupka, S. Saegebarth, P. Schilling, N. Steinhau-Kühl, B. van der Horst
    DESY, Hamburg, Germany
 
  For the European XFEL (EU-XFEL), two industrial companies are responsible for the manufacture and surface preparation of the eight hundred superconducting cavities. The companies had to strictly follow the XFEL specification and document all production and preparation steps. No performance guaranties were required. Each cavity delivered by industry to DESY is tested in a vertical test at 2K. Resonators not reaching the performances defined for application at the EU-XFEL linear accelerator modules or showing leakage during cold RF tests have undergone a subsequent retreatment at DESY. Nearly 20% of the cavity production required retreatment, most of them by an additional high pressure rinsing. Some cavities received additional chemical treatment by BCP flash after the initial HPR did not cure the problem. The analysis of retreatments and quality control data available from the retreatment sequences and the workflow of retreatment will be presented.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB104 Series Production of BQU at DESY for the EU-XFEL Module Assembly at CEA Saclay 865
 
  • B. van der Horst, M. Helmig, A. Matheisen, S. Saegebarth, M. Schalwat
    DESY, Hamburg, Germany
 
  Each of the 103 XFEL modules foreseen for the EU-XFEL as well as the 3,9 GHZ injector module is equipped with a combination of beam position monitors, superconducting quadrupole and a gate valve connected to the beam position monitor. The subunits are prequalified by the different work package of the EU-XFEL collaboration and handover to the DESY cleanroom. These subunits are assembled in the DESY ISO 4 cleanroom to unit named BQU, quality controlled in respect of cleanliness and handover in status “ready for assembly in ISO 4 cleanroom” for string assembly to the ISO 4 cleanroom located at CEA France. Series production started with production sequences of one unit per week and needed to be accelerated up to five or six units per month (>=1.25 units per week) in beginning of 2015. Analysis of data taken during production and the optimization of work flow for higher production rates are presented.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB105 String Assembly for the EU-XFEL 3.9 GHz Module at DESY 869
 
  • M. Schmökel, R. Bandelmann, A. Daniel, A. Matheisen, P. Schilling, B. van der Horst
    DESY, Hamburg, Germany
  • R. Paparella, P. Pierini, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  For the injector of the EU- XFEL one so-called 3.9 GHz module is required. This special module houses eight 3.9 GHz s.c. cavities, a beam position monitor and a quadrupole package. The cavities were fabricated and vertically tested as an in-kind contribution to the EU-XFEL by INFN Milano collaborators. The power couplers have been fabricated and conditioned by FNAL. The string assembly took place inside the ISO 4 cleanroom at DESY. A seven meter long alignment and assembly girder for this special string assembly has been designed and fabricated at DESY. The girder facilitates the assembly of the 3.9 GHz resonators with alternating power coupler orientation in ISO 4 cleanrooms. For redundancy and fast action on problems during string assembly, the DESY high pressure rinsing system (HPR) has been modified on the basis of the INFN Milano design for this 3.9 GHz application. The HPR has been qualified by four 3.9 GHz resonators, tested at INFN Milano. The integration of the cavities into Helium vessels, power coupler coupling factor and the power coupler assembly at DESY is qualified by one cavity that has been equipped with Helium tank and a power coupler and tested horizontally.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB056 SRF Gun Cavity R&D at DESY 1231
 
  • D. Kostin, C. Albrecht, A. Brinkmann, Th. Buettner, J. Eschke, T. Feldmann, A. Gössel, D. Klinke, A. Matheisen, W.-D. Möller, D. Reschke, M. Schmökel, J.K. Sekutowicz, W. Singer, X. Singer, N. Steinhau-Kühl, J. Ziegler, B. van der Horst
    DESY, Hamburg, Germany
  • M. Barlak, J.A. Lorkiewicz, R. Nietubyć
    NCBJ, Świerk/Otwock, Poland
 
  SRF Gun Cavity is an ongoing accelerator R&D project at DESY, being developed since several years. Currently several SRF Gun cavity prototypes were simulated, built and tested in our Lab and elsewhere. Lately the 1.6 cells Pb thin film cathode niobium cavity was tested in a vertical cryostat with a different cathode plug configurations. Cathode plug design was improved, as well as SRF Gun Cavity cleaning procedures. Results of the last cavity performance tests are presented and discussed.  
poster icon Poster THPB056 [1.257 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)