Author: Valente-Feliciano, A-M.
Paper Title Page
TUBA03 On the Understanding of Q-Slope of Niobium Thin Films 494
 
  • S. Aull, T. Junginger, A. Sublet, W. Venturini Delsolaro, P. Zhang
    CERN, Geneva, Switzerland
  • J. Knobloch
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  The Q-slope of niobium coated copper cavities at medium fields is still the limiting factor for the application the Nb/Cu technology in accelerators. This paper presents a dedicated study of a niobium coating with bulk-like characteristics which shows a Q-slope comparable to bulk Nb at 400 MHz and 4 K. Combining the bulk like film with recent findings of the HIE Isolde indicates that the film microstructure and the Nb/Cu interface are the key aspects to understanding the Q-slope.  
slides icon Slides TUBA03 [3.414 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUBA08 Growth and Characterization of Multi-Layer NbTiN Films 516
 
  • A-M. Valente-Feliciano, G.V. Eremeev, C.E. Reece, J.K. Spradlin
    JLab, Newport News, Virginia, USA
  • M.C. Burton, R.A. Lukaszew
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Significant theoretical interest has stimulated efforts to grow and characterize thin multi-layer superconductor/insulator/superconductor structures for their potential capability of supporting otherwise inaccessible surface magnetic fields in SRF cavities. The technological challenges include realization of high quality superconductors with sharp, clean, transition to high quality dielectric materials and back to superconductor, with careful thickness control of each layer. Choosing NbTiN as the first candidate material, we have developed the tools and techniques that produce such SIS film structures and have begun their characterization. Using DC magnetron sputtering and HiPIMS, NbTiN and AlN can be deposited with nominal superconducting and dielectric parameters. Hc1 enhancement is observed for NbTiN layers with a Tc of 16.9 K for a thickness less than 150 nm. The optimization of the thickness of each type of layer to reach optimum SRF performance is underway. This talk describes this work and the rf performance characteristics observed to date.  
slides icon Slides TUBA08 [8.536 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB029 Material Quality & SRF Performance of Nb Films Grown on Cu via ECR Plasma Energetic Condensation 622
 
  • A-M. Valente-Feliciano, G.V. Eremeev, C.E. Reece, J.K. Spradlin
    JLab, Newport News, Virginia, USA
  • S. Aull
    CERN, Geneva, Switzerland
  • Th. Proslier
    ANL, Argonne, Illinois, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The RF performance of bulk Nb cavities has continuously improved over the years and is approaching the intrinsic limit of the material. Although some margin seems still available with processes such as N surface doping, long term solutions for SRF surfaces efficiency enhancement need to be pursued. Over the years, Nb/Cu technology, despite its shortcomings, has positioned itself as an alternative route for the future of superconducting structures used in accelerators. Significant progress has been made in recent years in the development of energetic deposition techniques such as Electron Cyclotron Resonance (ECR) plasma deposition. Nb films with very high material quality have then been produced by varying the deposition energy alluding to the promise of performing SRF films. This paper presents RF measurements, correlated with surface and material properties, for Nb films showing how, by varying the film growth conditions, the Nb film quality and surface resistance can be altered and how the Q-slope can be eventually overcome.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB037 Superconducting NbN-Based Multilayer and NbTiN Thin Films for the Enhancement of SRF Accelerator Cavities 638
 
  • M.C. Burton, M. Beebe, R.A. Lukaszew, J.M. Riso
    The College of William and Mary, Williamsburg, Virginia, USA
  • C.E. Reece, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: Funded by: Defense Threat Reduction Agency HDTRA1-10-1-0072
Current superconducting radio frequency (SRF) technology, used in various particle accelerator facilities is reliant upon bulk Nb. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to material-dependent limits, i.e. ~50 MV/m for bulk Nb. One possible solution to overcome this limit proposed by A. Gurevich consists of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities which may prevent early field penetration and thus delay high field breakdown*. Some candidate materials proposed for this scheme are NbN and NbTiN. Here we present experimental results correlating film microstructure and surface morphology with superconducting properties on coupon samples made with NbN and NbTiN. We have achieved thin films with close to bulk-like lattice parameters and transition temperatures, while achieving Hc1 values larger than bulk for films thinner than their London penetration depths. We compare results from samples grown utilizing NbTi targets with different stoichiometries and we will show RF measurements from 2” coupon samples.
*A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006).
 
poster icon Poster TUPB037 [0.989 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB063 A Multi-Sample Residual Resistivity Ratio System for High Quality Superconductor Measurements 726
 
  • J.K. Spradlin, C.E. Reece, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR2317.
For developing accelerator cavity materials, superconducting transition temperature (TC), transition width (ΔTC), and residual resistivity ratio (RRR), are useful parameters to correlate with SRF performance and fabrication processes of bulk, thin film, and novel materials. The RRR gauges the purity and structure of the superconductor based on the temperature dependence of electron scattering in the normal conducting state. Combining a four point probe delta pulse setup with a switch allows multiplexing of the electrical measurements to 32 samples per cooldown cycle. The samples are measured inside of an isothermal setup in a liquid helium (LHe) dewar. The isothermal setup is required for a quasistatic warmup of the samples through TC. This contribution details the current setup for collecting RRR and TC data, the current standard of throughput, measurement quality of the setup, and the improvements underway to increase the system’s resolution and ease of use.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)