Author: Sublet, A.
Paper Title Page
TUBA01 Status of the SRF Systems at HIE-ISOLDE 481
 
  • W. Venturini Delsolaro, L. Arnaudon, K. Artoos, C. Bertone, J.A. Bousquet, N. Delruelle, M. Elias, J.A. Ferreira Somoza, F. Formenti, J. Gayde, J.L. Grenard, Y. Kadi, G. Kautzmann, Y. Leclercq, M. Mician, A. Miyazaki, E. Montesinos, V. Parma, G.J. Rosaz, K.M. Schirm, E. Siesling, A. Sublet, M. Therasse, L. Valdarno, D. Valuch, G. Vandoni, L.R. Williams, P. Zhang
    CERN, Geneva, Switzerland
 
  The HIE-ISOLDE project has been approved by CERN in 2009 and gained momentum after 2011. The final energy goal of the upgrade is to boost the radioactive beams of REX-ISOLDE from the present 3 MeV/u up to 10 MeV/u for A/q up to 4.5. This is to be achieved by means of a new superconducting linac, operating at 101.28 MHz and 4.5 K with independently phased quarter wave resonators (QWR). The QWRs are based on the Nb sputtering on copper technology, pioneered at CERN and developed at INFN-LNL for this cavity shape. Transverse focusing is provided by Nb-Ti superconducting solenoids. The cryomodules hosting the active elements are of the common vacuum type. In this contribution we will report on the recent advancements of the HIE-ISOLDE linac technical systems involving SRF technology. The paper is focused on the cavity production, on the experience with the assembly of the first cryomodule (CM1), and on the results of the first hardware commissioning campaign.  
slides icon Slides TUBA01 [27.129 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUBA03 On the Understanding of Q-Slope of Niobium Thin Films 494
 
  • S. Aull, T. Junginger, A. Sublet, W. Venturini Delsolaro, P. Zhang
    CERN, Geneva, Switzerland
  • J. Knobloch
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  The Q-slope of niobium coated copper cavities at medium fields is still the limiting factor for the application the Nb/Cu technology in accelerators. This paper presents a dedicated study of a niobium coating with bulk-like characteristics which shows a Q-slope comparable to bulk Nb at 400 MHz and 4 K. Combining the bulk like film with recent findings of the HIE Isolde indicates that the film microstructure and the Nb/Cu interface are the key aspects to understanding the Q-slope.  
slides icon Slides TUBA03 [3.414 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB027 Developments on SRF Coatings at CERN 617
 
  • A. Sublet, S. Aull, B. Bártová, S. Calatroni, T. Richard, G.J. Rosaz, M. Taborelli, M. Therasse, W. Venturini Delsolaro, P. Zhang
    CERN, Geneva, Switzerland
 
  The thin films techniques applied to Superconducting RF (SRF) has a long history at CERN. A large panel of cavities have been coated from LEP, to LHC. For the current and future projects (HIE-ISOLDE, HL-LHC, FCC) there is a need for further higher RF-performances with focus on minimizing residual resistance Rres and maximizing quality factor Q0 of the cavities. This paper will present CERN’s developments on thin films to achieve these goals through the following main axes of research: The first one concerns the application of different coating techniques for Nb (DC-bias diode sputtering, magnetron sputtering and HiPIMS). Another approach is the investigation of alternative materials like Nb3Sn. These lines of development will be supported by a material science approach to characterize and evaluate the layer properties by means of FIB-SEM, TEM, XPS, XRD, etc. In addition a numerical tool for plasma simulation will be exploited to develop adapted coating systems and optimize the coating process, from plasma generation to thin film growth.  
poster icon Poster TUPB027 [1.070 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB077 The Influence of Cooldown Conditions at Transition Temperature on the Quality Factor of Niobium Sputtered Quarter-Wave Resonators for HIE-ISOLDE 765
 
  • P. Zhang, G.J. Rosaz, A. Sublet, M. Therasse, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
 
  Funding: This work has been supported partly by a Marie Curie Early Initial Training Network Fellowship of the European Community’s 7th Programme under contract number PITN-GA-2010-264330-CATHI.
Superconducting quarter-wave resonators (QWRs) are to be used in the ongoing linac upgrade of the ISOLDE facility at CERN. The cavities are made of niobium sputtered on copper substrates. They will be operated at 101.28 MHz at 4.5 K providing 6 MV/m accelerating gradient with 10 W power dissipation. In recent measurements, we found the thermal gradient along the cavity during the niobium superconducting transition has an impact on the cavity quality factor. On the other hand, the speed of the cooling down through the superconducting transition turned out to have no influence on the cavity Q-factor.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB048 Design of a Compact Superconducting Crab-Cavity for LHC Using Nb-on-Cu-Coating Technique 1205
 
  • A. Grudiev, S. Atieh, R. Calaga, S. Calatroni, O. Capatina, F. Carra, G. Favre, L.M.A. Ferreira, J.-F. Poncet, T. Richard, A. Sublet, C. Zanoni
    CERN, Geneva, Switzerland
 
  The design of a compact superconducting crab-cavity for LHC using Nb-on-Cu-coating technique is presented. The cavity shape is based on the ridged waveguide resonator with wide open apertures to provide access to the inner surface of the cavity for coating. It also provides natural damping for HOMs and rather low longitudinal and transverse impedances. The results of the cavity shape optimization taking into account RF performance, coating, and thermo-mechanical considerations as well as the design and fabrication plans of the first prototype for coating and cold tests are presented.  
poster icon Poster THPB048 [0.534 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)