Paper | Title | Page |
---|---|---|
MOBA03 | Sensitivity of Niobium Superconducting RF Cavities to Magnetic Field | 34 |
|
||
One important characteristic of nitrogen-doped cavities is their very high sensitivity to increased residual surface resistance from trapped ambient magnetic flux. We have performed a systematic study on the losses by trapped flux, and their dependence on the mean-free-path (MFP) of the niobium RF penetration layer. Cavities with a wide range of MFP values were tested in uniform ambient magnetic fields to measure trapped magnetic flux and resulting increase in RF surface resistance. MFP values were determined from surface impedance measurements. It was found that larger mean free paths lead to lower sensitivity to trapped magnetic flux. | ||
![]() |
Slides MOBA03 [1.817 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOBA08 | Niobium Impurity-Doping Studies at Cornell and CM Cool-Down Dynamic Effect on Q0 | 55 |
|
||
As part of a multi-laboratory research initiative on high Q0 niobium cavities for LCLS-II and other future CW SRF accelerators, Cornell has conducted an extensive research program during the last two years on impurity-doping of niobium cavities and related material characterization. Here we give an overview of these activities, and present results from single-cell studies, from vertical performance testing of nitrogen-doped nine-cell cavities, and from cryomodule testing of nitrogen-doped nine-cell cavities. | ||
![]() |
Slides MOBA08 [8.983 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB004 | Understanding the Field Dependence of the Surface Resistance in Nitrogen-Doped Cavities | 74 |
|
||
Funding: NSF Grant PHYS-1416318 An important limiting factor in the performance of superconducting radio frequency (SRF) cavities in medium and high field gradients is the intrinsic quality factor and, thus, the surface resistance of the cavity. The exact dependence of the surface resistance on the magnitude of the RF field is not well understood. We present an analysis of experimental data of LT1-3 and LT1-4, 1.3 GHz single-cell nitrogen-doped cavities prepared and tested at Cornell. Most interestingly, the cavities display anti-Q slopes in the medium-field region (i.e. Rs decreases with increasing accelerating field). We extract the temperature dependent surface resistances of the cavities, analyze field dependencies, and compare with theoretical predictions. These comparisons and analyses provide new insights into the field dependence of the surface resistance and improve our understanding of the mechanisms behind the effect. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB006 | Hc2 Measurements of Superconductors | 79 |
|
||
Funding: NSF/DOE Recently, Cornell has improved a method for extracting the upper critical field Hc2 of a thin-film superconductor using four-point resistivity measurements. In the field of superconducting radio-frequency accelerators (SRF), novel materials and processes such as nitrogen-doped niobium and Nb3Sn may allow for improved SRF performance and cost efficiency over traditional niobium. In this paper we present updated results on Hc2 measurements for Nb3Sn, as well as results for niobium prepared with an 800 C bake. We also extract important material properties from these measurements, such as the Ginzburg Landau parameter, the mean free path, and coherence length, which are critical for determining SRF performance. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB028 | Preservation of Very High Quality Factors of 1.3 GHz Nine Cell Cavities From Bare Vertical Test to Dressed Horizontal Test | 149 |
|
||
In this contribution we will report quality factor evolution of several different nine cell N doped cavities with very high Q. The evolution of the quality factor will be reported from bare to dressed in vertical test to dressed in horizontal test with unity coupling to dressed in horizontal test and CM-like environment/configuration (with RF ancillaries). Cooling studies and optimal cooling regimes will be discussed for both vertical and horizontal tests and comparisons will be drawn also for different styles titanium vessels. Studies of sensitivities to magnetic field in final horizontal configuration have been performed by applying a field around the dressed cavity and varying the cooling; parameters required for a very good flux expulsion will be presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB033 | LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration | 159 |
|
||
Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515. The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB040 | Performance of Dressed Cavities for the Jefferson Laboratory LCLS-II Prototype Cryomodule - With Comparison to the Pre-Dressed Performance | 178 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 with supplemental funding from the LCLS-II Project U.S. DOE Contract No. DE-AC02-76SF00515. Initial vertical RF test results and quench studies for six of the eight undressed 9 cell cavities slated for use in the Jefferson laboratory LCLS-II prototype cryomodule were presented at IPAC2015*. For the final string 2 more cavities AES029 and AES030 (work done at Cornell) are being processed and tested for qualification before helium vessel welding. In addition, AES034 (initial R&D treatment) is being reworked with the current production protocol after a surface reset to improve the overall performance. After final qualification all 8 cavities will be welded into helium vessels and equipped with HOM couplers. In this paper we will present the final undressed and dressed vertical RF data comparing the changes in the surface resistance before their installation in the cryomodule string. *A.D. Palczewski et al. Quench Studies of Six High Temperature Nitrogen Doped 9 Cell Cavities for use in the LCLS-II Prototype Cryo-module at Jefferson Laboratory, Proc. IPAC2015, WEPWI019, 2015. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB041 | Cryomodule Testing of Nitrogen-Doped Cavities | 182 |
|
||
Funding: DOE and the LCLS-II High Q Project The Linac Coherent Light Source-II (LCLS-II) is a new FEL x-ray source that is planned to be constructed in the existing SLAC tunnel. In order to meet the required high Q0 specification of 2.7x1010 at 2 K and 16 MV/m, nitrogen-doping has been proposed as a preparation method for the SRF cavities in the linac. In order to test the feasibility of these goals, four nitrogen-doped cavities have been tested at Cornell in the Horizontal Test Cryomodule (HTC) in five separate tests. The first three tests consisted of cavities assembled in the HTC with high Q input coupler. The fourth test used the same cavity as the third but with the prototype high power LCLS-II coupler installed. Finally, the fifth test used a high power LCLS-II coupler, cavity tuner, and HOM antennas. Here we report on the results from these tests along with a systematic analysis of change in performance due to the various steps in preparing and assembling LCLS-II cavities for cryomodule operation. These results represent one of the final steps to demonstrate readiness for full prototype cryomodule assembly for LCLS-II. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB042 | Fundamental Studies on Doped SRF Cavities | 187 |
|
||
Funding: NSF Recently, doping with nitrogen has been demonstrated to help SRF cavities reach significantly higher intrinsic quality factors than with standard procedures. However, the quench fields of these cavities have also been shown to be frequently reduced. Here we report on fundamental studies of doped cavities, investigating the source of reduced quench field and exploring alternative dopants. We have focused on studying the quench of nitrogen-doped cavities with temperature mapping and measurements of the flux penetration field using pulsed power to investigate maximum fields in nitrogen doped cavities. We also report on studies of cavities doped with other gases such as helium. These studies have enabled us to shed light on the mechanisms behind the higher Q and lower quench fields that have been observed in cavities doped with impurities. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB084 | Performance of Nitrogen-Doped 9-Cell SRF Cavities in Vertical Tests at Cornell University | 328 |
|
||
Cornell University treated five LCLS-II 9-cell cavities by nitrogen-doping recipe. In this paper, we reported the performance of these 9-cell cavities. In the treatments, the nitrogen recipes are slightly different. The cavities have been firstly doped under high nitrogen pressure; after the vertical tests some of the cavities has been reset the surface and re-doped under light nitrogen pressure. The detail of the cavity preparation and test results will be shown. The comparison of the different recipes will be discussed. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB081 | Multi-Cell Temperature Mapping and Conclusions | 783 |
|
||
Multi-cell temperature mapping (T-map) system has been developed and applied on SRF Nb cavities vertical tests (VT) at Cornell. It has nearly two thousand thermometers and achieved a 1mK resolution of niobium surface temperature rinsing in superfluid helium . We have upgraded the system to be capable of monitoring the temperature profiles of quench spot on cavity. The recent results of T-map during cavity tests and details will be reported. | ||
![]() |
Poster TUPB081 [4.421 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB095 | Resonance Control for Narrow-Bandwidth, Superconducting RF Applications | 828 |
|
||
Optimal control techniques have been employed in a variety of applications since they were first developed more than 60 years ago but until now they have been used in few if any accelerator-related applications. The next generation of superconducting accelerators will require both precise control of the gradient and active stabilization of the resonance frequency. Optimal control techniques provide a self-consistent framework within which to construct a combined electro-mechanical controller. Results from recent cold cavity tests at Fermilab are presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRAA04 | Performance of the Cornell ERL Main Linac Prototype Cryomodule | 1437 |
|
||
Cornell has designed, fabricated, and tested (by the time of the conference) a high current (100 mA) CW SRF prototype cryomodule for the Cornell ERL. This talk will report on the design and performance of this very high Q0 CW cryomodule including design issues and mitigation strategies. | ||
![]() |
Slides FRAA04 [4.614 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |