Author: Amorim Carvalho, A.
Paper Title Page
THAA05 First Results of SRF Cavity Fabrication by Electro-Hydraulic Forming at CERN 1012
 
  • S. Atieh, A. Amorim Carvalho, I. Aviles Santillana, F.F. Bertinelli, R. Calaga, O. Capatina, G. Favre, M. Garlaschè, F. Gerigk, S.A.E. Langeslag, K.M. Schirm, N. Valverde Alonso
    CERN, Geneva, Switzerland
  • D. Alleman, G. Avrillaud, J. Bonafe, E. Mandel, P. Marty, H. Peronnet, R. Plaut
    Bmax, Toulouse, France
 
  In the framework of many accelerator projects relying on RF superconducting technology, shape conformity and processing time are key aspects for the optimization of niobium cavity fabrication. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is Electro-Hydraulic Forming (EHF). In EHF, cavities are obtained through ultra-high-speed deformation of blank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield valuable results in terms of effectiveness, repeatability, final shape precision, higher formability and reduced spring-back. In this paper, the first results of EHF on copper prototypes and ongoing developments for niobium for the Superconducting Proton Linac studies at CERN are discussed. The simulations performed in order to master the embedded multi-physics phenomena and to steer process parameters are also presented.  
slides icon Slides THAA05 [21.123 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
FRBA02 Crab Cavity and Cryomodule Development for HL-LHC 1460
 
  • F. Carra, A. Amorim Carvalho, K. Artoos, S. Atieh, I. Aviles Santillana, A.B. Boucherie, J.P. Brachet, K. Brodzinski, R. Calaga, O. Capatina, T. Capelli, L. Dassa, T. Dijoud, H.M. Durand, G. Favre, L.M.A. Ferreira, P. Freijedo Menendez, M. Garlaschè, M. Guinchard, N. Kuder, S.A.E. Langeslag, R. Leuxe, A. Macpherson, P. Minginette, E. Montesinos, F. Motschmann, C. Parente, L. Prever-Loiri, D. Pugnat, E. Rigutto, V. Rude, M. Sosin, G. Vandoni, G. Villiger, C. Zanoni
    CERN, Geneva, Switzerland
  • S.A. Belomestnykh, S. Verdú-Andrés, Q. Wu, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
  • G. Burt
    Lancaster University, Lancaster, United Kingdom
  • S.U. De Silva, J.R. Delayen, R.G. Olave, R.G. Olave, H. Park
    ODU, Norfolk, Virginia, USA
  • T.J. Jones, N. Templeton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • Z. Li
    SLAC, Menlo Park, California, USA
  • K.B. Marinov, S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T.H. Nicol
    Fermilab, Batavia, Illinois, USA
  • A. Ratti
    LBNL, Berkeley, California, USA
 
  The HL-LHC project aims at increasing the LHC luminosity by a factor 10 beyond the design value. The installation of a set of RF Crab Cavities to increase bunch crossing angle is one of the key upgrades of the program. Two concepts, Double Quarter Wave (DQW) and RF Dipole (RFD) have been proposed and are being produced in parallel for test in the SPS beam before the next long shutdown of CERN accelerator’s complex. In the retained concept, two cavities are hosted in one single cryomodule, providing thermal insulation and interfacing with RF coupling, tuning, cryogenics and beam vacuum. This paper overviews the main design choices for the cryomodule and its different components, which have the goal of optimizing the structural, thermal and electro-magnetic behavior of the system, while respecting the existing constraints in terms of integration in the accelerator environment. Prototyping and testing of the most critical components, manufacturing, preparation and installation strategies are also described.  
slides icon Slides FRBA02 [4.678 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)