Paper | Title | Page |
---|---|---|
MOPB079 | Analysis of the Test Rate for European XFEL Series Cavities | 316 |
|
||
The main part of the superconducting European XFEL linear accelerator consists of 100 accelerator modules each containing eight RF-cavities. Before the installation to a module, all of these cavities will be tested at cryogenic temperatures in a vertical cryostat in the accelerator module test facility (AMTF) at DESY. This paper discusses the average vertical test rate at the present status. It should be 1 in the ideal case, but actually it’s observed to be approximately 1.5. Classification and analysis concerning the reasons for this deviation are given as well as suggestions for a reduction of the test rate for future production cycles. | ||
![]() |
Poster MOPB079 [0.632 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB090 | Analysis of Degraded Cavities in Prototype Modules for the European XFEL | 355 |
|
||
In-between the fabrication and the operation in an accelerator the performance of superconducting RF cavities is typically tested several times. Although the assembly is done under very controlled conditions in a clean room, it is observed from time to time that a cavity with good performance in the vertical acceptance test shows deteriorated performance in the accelerator module afterwards. This work presents the analysis of several such cavities that have been disassembled from modules of the prototype phase for the European XFEL for detailed investigation like additional rf tests, optical inspection and replica. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB028 | Preservation of Very High Quality Factors of 1.3 GHz Nine Cell Cavities From Bare Vertical Test to Dressed Horizontal Test | 149 |
|
||
In this contribution we will report quality factor evolution of several different nine cell N doped cavities with very high Q. The evolution of the quality factor will be reported from bare to dressed in vertical test to dressed in horizontal test with unity coupling to dressed in horizontal test and CM-like environment/configuration (with RF ancillaries). Cooling studies and optimal cooling regimes will be discussed for both vertical and horizontal tests and comparisons will be drawn also for different styles titanium vessels. Studies of sensitivities to magnetic field in final horizontal configuration have been performed by applying a field around the dressed cavity and varying the cooling; parameters required for a very good flux expulsion will be presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB098 | Error Analysis on RF Measurement Due to Imperfect RF Components | 840 |
|
||
Funding: Work supported by FRA under DOE contract DE-AC02-07CH11359 An accurate cavity test involves the accurate power measurement and decay time measurement. The directional coupler in a typical cavity test llrf system usually has low directivity due to broadband requirement and fabrication errors. The imperfection of the directional coupler brings unexpected systematic errors for cavity power measurement in both forward and reflect power. An error analysis will be giving and new specification of directional coupler is proposed. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB099 | Magnetic Foils for SRF Cryomodule | 844 |
|
||
Funding: Work supported by FRA under DOE contract DE-AC02-07CH11359 High quality factor niobium cavities require minimal residual magnetic field around the high magnetic field region. A typical global magnetic shield takes more material and provides less effective magnetic screening. On the other hand, local magnetic shield has to introduce complex geometries to cover access ports and instrumentation and thermal straps. Local magnetic source and thermal current will increase residual field seen by SRF cavities regardless the complexity of local magnetic shield. Magnetic foils that is cryogenic compatible provides a great benefit to reduce residual magnetic field. This paper will describe the evaluation of such magnetic foils in both vertical and horizontal test. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |