Keyword: TRIUMF
Paper Title Other Keywords Page
MOP290 Self Excited Operation for a 1.3 GHz 5-cell Superconducting Cavity cavity, controls, feedback, superconducting-cavity 660
 
  • K. Fong, M.P. Laverty, Q. Zheng
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • E.P. Chojnacki, G.H. Hoffstaetter, D. Meidlinger, S.P. Wang
    CLASSE, Ithaca, New York, USA
 
  Self-Excited operation of a resonant system does not require any external frequency tracking as the frequency is determined by the phase lag of the self-excited loop, it is therefore particularly useful for testing high Q RF cavities that do not have an automatic tuning mechanism. Self-exited operation has long been shown to work with single-cell cavities. We have recently demonstrated that it is also possible for multi-cell cavities, where multiple resonant modes are present. The Cornell 1.3 GHz 5-cell superconducting cavities was operated using Self-Excited operation and we were able to lock to the accelerating (pi) mode, despite the presence of neighbouring modes that are less than 10 MHz away. By means of the loops phase advance, we were able to select which mode was excited.  
 
WEOCS6 The Injector Cryomodule for e-Linac at TRIUMF cryomodule, linac, ISAC, cavity 1469
 
  • R.E. Laxdal, C.D. Beard, S.R. Koscielniak, A. Koveshnikov, A.K. Mitra, T.C. Ries, I. Sekachev, V. Zvyagintsev
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • M. Mondal, V. Naik
    DAE/VECC, Calcutta, India
 
  The e-Linac project at TRIUMF, now funded, is specified to accelerate 10mA of electrons to 50MeV using 1.3GHz multi-cell superconducting cavities. The linac consists of three cryomodules; an injector cryomodule with one cavity and two accelerating modules with two cavities each. The injector module is being designed and constructed in collaboration with VECC in Kolkata. The design utilizes a unique box cryomodule with a top-loading cold mass. A 4K phase separator, 2K-4K heat exchanger and Joule-Thompson valve are installed within each module to produce 2K liquid. The design and status of the development will be presented.  
slides icon Slides WEOCS6 [13.002 MB]  
 
WEP231 TRIUMF Cyclotron Beam Quality Improvement cyclotron, extraction, emittance, beam-losses 1921
 
  • I.V. Bylinskii, R.A. Baartman, F.W. Bach, J.F. Cessford, G. Dutto, Y.-N. Rao, L.W. Root, R. Ruegg
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  TRIUMF cyclotron for decades operated at 500 MeV. Recently, the two primary beamlines 1A and 2A, have been reconfigured for running at 480 MeV. The objective was to reduce beam losses caused by the electromagnetic stripping by 30%. The radiation losses reduction was confirmed with both online measurements and residual activation field mapping after 8 month of beam production. In order to improve stability of both primary beams, one of the harmonic coils was configured in Bz-mode to compensate for the beam split ratio fluctuations. Br-mode of this coil and two outer radius trim coils was utilized to correct the beam vertical position at extraction. Moreover, to make the beam spot position on the target stable and insensitive to any uncontrolled movement of the stripper foil due to heat distortion, the beamline front end optics was tuned to compensate the cyclotron's inherent dispersion. Details of these developments and improvements are discussed in the paper.  
 
FROBN4 Commissioning of the 20MV Superconducting Linac Upgrade at TRIUMF ISAC, linac, target, ion 2570
 
  • M. Marchetto
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  The Phase II upgrade of the ISAC-II Superconducting Heavy Ion Linac involves the addition of twenty quarter-wave bulk niobium resonators housed in three cryomodules. This addition brings the total installed accelerating voltage from 20MV to 40MV. The cavities are produced in Canadian industry with cavity testing and cryomodule assembly at TRIUMF. The speaker will discuss commissioning of, and operations with, this major upgrade, which commenced in April 2010.  
slides icon Slides FROBN4 [3.990 MB]