Commissioning of the 20MV Superconducting Linac Upgrade at TRIUMF

Marco Marchetto | TRIUMF

Summary

o Introduction

- ISAC facility
o ISAC-II project
- ISAC-II Phase II upgrade
- Beam commissioning results
o Operational experience
- Beam delivery
- Future program
o Conclusions

Summary

o Introduction

- ISAC facility
o ISAC-II project
- ISAC-II Phase II upgrade
- Beam commissioning results
o Operational experience
- Beam delivery
- Future program
o Conclusions

ISAC at TRIUMF

o ISOL facility for rare isotope beam (RIB) production

o Highest power driver beam (50 kW)

o Most intense radioactive beam of certain species

巴TRIUMF

ISAC in the world

Lab	Facility	Type	Driver	Post- accelerator	Voltage $(\mathbf{M V})$	Energy $(\mathrm{MeV/u})$
Existing						
TRIUMF	ISAC	ISOL	$500 \mathrm{MeV}, 50 \mathrm{~kW}$,	RFQ, DTL, SCL	52.5	$6.5-18$
CERN	ISOLDE	ISOL	$1.4 \mathrm{GeV}, 2.8 \mathrm{kW} p$,	RFQ, DTL	13	3
GANIL	Spiral-I	ISOL	3 kW HI	cyclotron		$\sim 5-25$
ORNL	Holifield	ISOL	$50 \mathrm{MeV}, 500 \mathrm{~W}$ p,d	tandem	25	
ANL	CARIBU	Gas- catcher	Radio-active source	ATLAS sc linac	52	$\sim 7-17$
Future					40	$6.5-18$
CERN	HIE-Isolde	ISOL	$1.4,2.8 \mathrm{kW} p$,	SCL		$12-20$
MSU/ NSCL	FRIB	Gas- catcher	400 kW HI	RFQ, SCL		5
GANIL	SPIRAL-II	ISOL	200 kW d	cyclotron		$5-25$

@triumf

ISAC driver

o H^{-}cyclotron as proton driver;
o ISAC proton accelerated to 500 MeV up to
$100 \mu \mathrm{~A}$;
o ARIEL : one more proton line for RIB
production. Cyclotron can operate at $300 \mu \mathrm{~A}$.

Target stations and Mass separator

o Two underground target stations;
o Proton beam sent to one of the target station at the time
o Pre-separator inside the shielded area
o Mass separator on high voltage platform o Charge breeder: ECR

巴TRIUMF

Experimental facilities

民triumf

ISAC I Linac

o Two normal conducting accelerators
o RFQ

- $8 m$ long CW machine
- $150 \mathrm{keV} / \mathrm{u}, 3 \leq \mathrm{A} / \mathrm{q} \leq 30$
- high quality transverse and longitudinal emittance: $0.2 \pi \mu \mathrm{~m}$ and $1.5 \pi \mathrm{kev} / \mathrm{u} \cdot \mathrm{ns}$.

o DTL

- Separated functions
- Five IH interdigital RF cavities
- Three split-ring bunchers
- Variable energy machine
- $150 \mathrm{keV} / \mathrm{u} \leq \mathrm{E} \leq 1.8 \mathrm{MeV} / \mathrm{u}$, $2 \leq A / q \leq 7$
- ISAC II injector 1.5 MeV/u

Summary

o Introduction

- ISAC facility
o ISAC-II project
- ISAC-II Phase II upgrade
- Beam commissioning results
o Operational experience
- Beam delivery
- Future program
o Conclusions

ISAC-II - The idea

o The idea (~1999) was to expand ISAC capabilities
o Need higher energies to support Nuclear Physics studies at and above the Coulomb barrier:

- Goal energy $\mathrm{E} \geq 6.5 \mathrm{MeV} / \mathrm{u}$ for $\mathrm{A} / \mathrm{q}=6$ with full energy variability
- The decision was to develop a superconducting heavy ion linac of 40MV
o Need broader mass range to A~150
- Add ECR Charge State Booster (CSB) to increase the charge state for $A>30$ to meet the RFQ A/q acceptance

巴TRIUMF

ISAC-II SC-Linac

ISAC-II QWR Cavities

ISAC-II design values: $V_{\text {eff }}=1.1 \mathrm{MV}, P_{\text {cav }}=7 \mathrm{~W}, E_{p}=30 \mathrm{MV} / \mathrm{m}, H_{p}=60 \mathrm{mT}$

Phase II Upgrade

o $7.5 \mathrm{M} \$$ project

- $2.7 \mathrm{M} \$$ - cryogenics - refrigerator and distribution
- $1.4 \mathrm{M} \$$ - cavities
- $2.4 \mathrm{M} \$$ - cryomodules
- $1 \mathrm{M} \$$ infrastructure - RF amplifiers, power supplies, installation
o Development of PAVAC Industries as a Canadian supplier of bulk niobium SRF resonators
o Initiated development in 2007, ordered production cavities March 2008
o Tight schedule - mandated end date of March 31, 2010
o Coincided with the end of the TRIUMF Five year plan and also the end of project budget
o The project was completed on time and on budget

Developments/Challenges

o Production/development
o Frequency tuning after manufacture

- New procedure for fine-tuning frequency using etching developed
o Hardware
- Mechanical tuner with brushless servo-motor and anti-backlash ball screw
- Variable coupler with improved mechanical stability
- Clean venting system through RF pick-up ports
o A few challenges
- Four cavities developed vacuum leaks after etching at TRIUMF
- RF amplifier company went bankrupt after delivery of 11 units
- Competition with planning for next five year plan - initiated 1.3GHz program

Clean room cold test

o Each cryomodule undergoes a cold test prior to delivery to the vault
o Establish warm off-sets for cold alignment using WPM and optical targets
o Check cavities and RF systems
o Measured cryogenic static load - 14-18W
o Establish vacuum integrity
o Check solenoid operation

BTRIUMF

Cavity characterization

Preparation: cavities are degreased, chemically etched, rinsed with high pressure water, dried and then assembled on test frame
o Single cavity tests yield an average performance of $32 \mathrm{MV} / \mathrm{m}$ at 7 W (14% below Phase I)
o (Fact) Due to vacuum leaks after $100 \mu \mathrm{~m}$ the etching specification was reduced to $60 \mu \mathrm{~m}$
o (Speculation) Marginal etch reduced performance; study in progress.

BTRIUMF

Beam commissioning

o All the hardware (optics, vacuum, diagnostic) is commissioned prior to send beam through the linac
o Coast the $1.5 \mathrm{MeV} / \mathrm{u}$ beam from ISAC-I: optics beam commissioning
o Solenoids perform as expected:

- no significant steering (good alignment)
- superconducting solenoid are set to theoretical values while matching the beam into the SC linac with quadrupoles

Performance from Acceleration

o ${ }^{16} \mathrm{O}^{5+}$ accelerated to $10.8 \mathrm{MeV} / \mathrm{u}$ equivalent to $6.5 \mathrm{MeV} / \mathrm{u}$ for $\mathrm{A} / \mathrm{q}=6$ (meets ISAC-II original specification on first acceleration)
o SCB's set to average $E_{p}=30.3 \mathrm{MV} / \mathrm{m}$, SCC's set to average $\mathrm{E}_{\mathrm{p}}=27 \mathrm{MV} / \mathrm{m}$
o One cavity unavailable in SCB and Four cavities unavailable in SCC due to RF cable problems

etriumf

Beam quality - transverse emittance

Beam quality - transverse emittance

o Beam from the ECR ion source (Pantechnik SUPERNANOGAN) with no stripping in the MEBT section
o Measured emittance is in line with the expected value of $0.2 \pi \mathrm{~mm}$ mrad
o In line with SCB measured emittance
o No emittance growth
o Expected beam quality confirmed at the high energy experimental stations

Beam quality - longitudinal emittance

Summary

o Introduction

- ISAC facility
o ISAC-II project
- ISAC-II Phase II upgrade
- Beam commissioning results
o Operational experience
- Beam delivery
- Future program
o Conclusions

BTRIUMF

ISAC-II Phase II installation schedule

o Vault installation began September 2009

- Beam line removed
- Cryogenic distribution installed (Linde TC50 600W commissioned)
o Final cryomodule installed March 24
o First beam $\left({ }^{16} \mathrm{O}^{5+}\right)$ was accelerated April 24
o First stable beam to an experiment April 25
o First RIB's accelerated May 3

BTRIUMF

Operational Experience

o Multipacting (low level)

- Some cavities require extensive multipacting conditioning; low voltage pulse conditioning over a few weeks reduces impact
o RF cables
- Four cables have developed in vacuum shorts; suspect high forward power during conditioning; we are fixing them (present shutdown)
o RF amplifiers
- Solid state amplifiers of Phase II more stable than tube amplifiers of Phase I; Phase I amplifiers need retuning as tubes age
o Cavity performance (Q) in SCC3 significantly less than single cavity test
- suspect Q-disease or trapped flux - under investigation
o Cryogenics
- Impurities in Phase I cold box and motor failure in Phase I compressor cause downtime

Species delivered

o Accelerator immediately in heavy use. The following beams have been accelerated with the SC linac since April 2010 (most of them delivered to experiment).
o Stable beams

- 16O5+, 4He2+, 16O8+, 15N4+, 20Ne5+,
o Radioactive beams with stable pilot
- 26Na, 26Al6+, 26Mg6+
- 78Br14+ from Charge State Booster
- 6He1+, 12C2+
- $24 \mathrm{Na} 5+$, 24Mg5+
- 11Li2+, 22Ne4+

BTRIUMF

Energy Booster Stripping Foil

Charge State Booster

o 14GHz Phoenix ECR source from Pantechnik
o Breeding efficiency 2-5\%
o Commissioned with stable beam ${ }^{85} \mathrm{Rb}^{14+}$ and radioactive ${ }^{78} \mathrm{Br}^{14+}$
o All RIBs come with contaminants from the background gas
o Need to purify the beam in flight. Development is in progress.

BTRIUMF

Beam purification

o Most experiments need at least 90% pure beam
o Different species with similar A/q (within 0.5%) are accelerated at the same time
o Contaminants have much higher (few order of magnitude) intensity of the desired RIB
o In flight purification techniques being developed:

- Mass resolution in transport lines
- Time of flight separation after energy degradation
- New particle identification diagnostics

Demonstration of beam line resolution technique

ISAC UC ${ }_{x}$ Target Fr Yields

o Comparison of experimental Fr yields with in-target production predictions of 3 models
o The absence of ${ }^{215-217} \mathrm{Fr}$ experimental yields is due to the msec half-lives of these nuclides which do not survive release from the target matrix
o $\quad{ }^{214 \mathrm{~m}} \mathrm{Fr}\left(\mathrm{t}_{1 / 2}=3.4 \mathrm{~ms}\right) \&{ }^{218 \mathrm{~m}} \mathrm{Fr}$ ($\mathrm{t}_{1 / 2}=22 \mathrm{~ms}$) were observed at $-5 \times 10^{5} / \mathrm{s}$

Courtesy of M. Dombsky

BTRIUMF

ISAC and ARIEL

o SC linac is the post accelerator for the future ARIEL facility
o New complementary driver (e-linac): electron driver for Photo-Fission
o New target stations and mass separators
o New front end and post accelerators
o Goal: three simultaneous radioactive beams
o RIB multi-users facility

Summary

o Introduction

- ISAC facility
o ISAC-II project
- ISAC-II Phase II upgrade
- Beam commissioning results
o Operational experience
- Beam delivery
- Future program
o Conclusions

Conclusions

o ISAC-II Phase II project

- A $7.5 \mathrm{M} \$$ project with R+D stretching over five years
- Completed on time and on budget
o ISAC-II now at full energy
- ISAC-II now can boost heavy ions to and above the Coulomb Barrier (unique ISOL facility)
- ISAC-II linac meets specification
- High beam quality available for experiments.
o ISAC is a main reference for RIB facilities world wide

Thank you Merci

