Keyword: low-level-rf
Paper Title Other Keywords Page
MOP196 A Modular Architecture for Accelerator Instrumentation controls, feedback, instrumentation, target 459
 
  • J.H. DeLong
    BNL, Upton, Long Island, New York, USA
 
  Funding: US Department of Energy
With accelerated schedules and finite resources the development of a common open source platform for accelerator instrumentation is required. This effort has led to the development of a flexible architecture with clearly defined interfaces. The resulting platform is currently used to implement fast orbit feedback as well as the Beam Position monitors for NSLS-II. The design includes an embedded processor, digital signal processing resources and communications interfaces to controls, the timing system and other devices distributed throughout the accelerator complex. This new architecture promotes customization and design re-use and is presented as an Open Source Hardware development project.
 
 
MOP296 Embedded System Architecture and Capabilities of the RHIC LLRF Platform controls, LLRF, feedback, monitoring 672
 
  • F. Severino, M. Harvey, T. Hayes, L.T. Hoff, R.C. Lee, A. Marusic, P. Oddo, K.S. Smith, K.L. Unger
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A high performance FPGA based platform has been developed for the RHIC Low Level RF system upgrade, and is now replacing our aging VME based systems. This new platform employs a sophisticated embedded architecture to implement its core functionality. This architecture provides a control system interface, manages remote access to all configuration parameters and diagnostic data, supports communication between all system components, enables real time application specific processing, monitors system health, etc. This paper will describe the embedded architecture and its capabilities, with emphasis on its application at RHIC.
 
 
WEOBN4 Multipurpose Controller Based on a FPGA with EPICS Integration controls, EPICS, monitoring, LLRF 1407
 
  • P. Echevarria, I. Arredondo, N. Garmendia, H. Hassanzadegan, L. Muguira
    ESS Bilbao, Bilbao, Spain
  • D. Belver, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • V. Etxebarria, J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  In this work a multipurpose configurable control system is presented. This controller is based on a high performance FPGA for a fast control connected to a Host PC which works as an EPICS server to allow a remote control. The communication between both parts is made by a register bank implemented in the FPGA and which is accessible by the Host PC by means of a Compact PCI bus. The initialization values, the numeric representation of the digital signals and the EPICS database are configured by an XML file. This control scheme has been prototyped for two applications: Low Level RF and Beam Position Monitoring. The former contains three digital loops to control the amplitude and phase of the RF supply and the geometry of the cavity. The latter processes the information from four capacitive buttons to calculate the position of the beam. In both systems, the necessary parameters for the digital processing of the acquired signals (using fast ADCs) and intermediate calculations are stored in the register bank connected to the cPCI bus. These systems are being developed for the ESS-Bilbao facility which will be built in Bilbao, Spain.  
slides icon Slides WEOBN4 [0.621 MB]