Sources and Medium Energy Accelerators
Tech 01: Proton and Ion Sources
Paper Title Page
WEP256 Laser-Proton Acceleration as Compact Ion Source 1960
 
  • S. Busold, O. Deppert, K. Harres, G. Hoffmeister, F. Nürnberg, M. Roth
    TU Darmstadt, Darmstadt, Germany
  • A. Almomani, C. Brabetz, M. Droba, O.K. Kester, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • V. Bagnoud, W.A. Barth, A. Blazevic, O. Boine-Frankenheim, P. Forck, I. Hofmann, A. Orzhekhovskaya, T. Stöhlker, A. Tauschwitz, W. Vinzenz, S.G. Yaramyshev
    GSI, Darmstadt, Germany
  • T.J. Burris-Mog, T.E. Cowan
    HZDR, Dresden, Germany
  • A. Gopal, S. Herzer, O. Jäckel, B. Zielbauer
    HIJ, Jena, Germany
  • T. Herrmannsdoerfer, M. Joost
    FZD, Dresden, Germany
  • M. Kaluza
    IOQ, Jena, Germany
 
  Preparatory work is presented in the context of the upcoming LIGHT project, which is dedicated to build up a test stand for injecting laser accelerated protons into conventional accelerator structures, located at GSI Helmholtzcenter for Heavy Ion Research (Darmstadt, Germany). In an experimental campaign in 2010, a beam of 8.4×109 protons with 170 ps pulse duration and (6.7±0.1) MeV particle energy could be focused with the use of a pulsed high-field solenoid. Collimation and transport of a 300 ps proton bunch containing 3×109 protons with (13.5±0.5) MeV particle energy over a distance of 407 mm was also demonstrated. Parallel simulation studies of the beam transport through the solenoid are in good agreement with the experiment.  
 
WEP257 Spectroscopic Estimation of Plasma Parameters for ECR Ion Source in the Intense 14-MeV Neutron Generator being developed at IPR 1963
 
  • S. Banerjee, M. Abhangi, T.K. Basu, J. Ghosh, S.C. Jakhar, N. Ramaiya, C.V.S. Rao, S.J. Vala
    Institute for Plasma Research, Bhat, Gandhinagar, India
  • P. Mehta
    Pandit Deendayal Petroleum University, Gandhinagar, India
 
  An accelerator based 14-MeV neutron generator, for fusion neutronics studies is being developed at IPR. ECR ion source is used to generate deuterium plasma. Electron density and temperature in the ECR plasma are measured using non-intrusive spectroscopic methods. Langmuir probes, though conventionally used for estimating local parameters in low-pressure microwave plasmas, are difficult to implement here owing to space constraint and heating of the probe from interaction with standing microwaves. Pure helium (He), He seeded hydrogen and deuterium plasmas are studied. Spectra for entire visible range are recorded for different fill pressures for a constant microwave power and different powers for a constant fill pressure. For optically thin plasmas of low density, line intensity ratio method can be used with appreciable reliability. CR model is used from ADAS (atomic data and analysis structure) to predict plasma parameters from suitable line ratios.
sbanerje@ipr.res.in
sudhir@ipr.res.in
Institute for Plasma Research
 
 
WEP261 Performance of the New EBIS Preinjector 1966
 
  • J.G. Alessi, E.N. Beebe, S. Binello, C.J. Gardner, O. Gould, L.T. Hoff, N.A. Kling, R.F. Lambiase, V. LoDestro, R. Lockey, M. Mapes, A. McNerney, J. Morris, M. Okamura, A. Pendzick, D. Phillips, A.I. Pikin, D. Raparia, J. Ritter, T.C. Shrey, L. Smart, L. Snydstrup, C. Theisen, M. Wilinski, A. Zaltsman, K. Zeno
    BNL, Upton, Long Island, New York, USA
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, and by the National Aeronautics and Space Administration.
The construction and initial commissioning phase of a new heavy ion preinjector was completed at Brookhaven in September, 2010, and the preinjector is now operational. This preinjector, using an EBIS source to produce high charge state heavy ions, provided helium and neon ion beams for use at the NASA Space Radiation Laboratory in the Fall of 2010, and gold and uranium beams are being commissioned during the 2011 run cycle for use in RHIC. The EBIS operates with an electron beam current of up to 10 A, to produce mA level currents in 10 to 40 μs beam pulses. The source is followed by an RFQ and IH linac to accelerate ions with q/m > 0.16 to an energy of 2 MeV/amu, for injection into the Booster synchrotron. The performance of the preinjector is presented, including initial operational experience for the NASA and RHIC programs.
 
 
WEP263 A Multiple Cathode Gun Design for the eRHIC Polarized Electron Source 1969
 
  • X. Chang, I. Ben-Zvi, J. Kewisch, V. Litvinenko, A.I. Pikin, V. Ptitsyn, T. Rao, B. Sheehy, J. Skaritka, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • E. Wang
    PKU/IHIP, Beijing, People's Republic of China
  • T. Xin
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The future electron-ion collider eRHIC requires a high average current (~50 mA), short bunch (~3 mm), low emittance (~20 μm) polarized electron source. The maximum average current of a polarized electron source so far is more than 1 mA, but much less than 50 mA, from a GaAs:Cs cathode [1]. One possible approach to overcome the average current limit and to achieve the required 50 mA beam for eRHIC, is to combine beamlets from multiple cathodes to one beam. In this paper, we present the feasibility studies of this technique.
 
 
WEP264 Laser Ion Source With Long Pulse Width for RHIC-EBIS 1972
 
  • K. Kondo, M. Okamura
    BNL, Upton, Long Island, New York, USA
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka, Japan
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and by the National Aeronautics and Space Administration.
The Electron Beam Ion Source (EBIS) at Brookhaven National Laboratory is a new heavy ion-projector for RHIC and NASA Space Radiation Laboratory. Laser Ion Source (LIS) with solenoid can supply many kinds of ion from solid targets and is suitable for long pulse length with low current as ion provider for RHIC-EBIS. In order to understand a plasma behavior for fringe field of solenoid, we measure current, pulse width and total ion charges by a new ion probe. The experimental result indicates that the solenoid confines the laser ablation plasma transversely.
 
 
WEP268 Changes in LEBT/MEBT at the BNL 200 MeV Linac 1978
 
  • D. Raparia, J.G. Alessi, J.M. Fite, O. Gould, V. LoDestro, M. Okamura, J. Ritter, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
After reconfiguration of the low energy (35 keV) and the medium energy (750 keV) transport lines in 2009-10, the Brookhaven linac is now delivering the highest intensity beam since it was built in 1970 (~120 μA average current of H to the Brookhaven Linac Isotope Producer). It is also now delivering lower emittance polarized H ion beam for the polarized program at RHIC. To increase the intensity further, we are replacing the buncher in the 750 keV line with one with higher Q value, to allow operation at higher power. Also, to improve polarization, we are replacing the magnetic solenoid before the RFQ in the 35 keV line by a solenoid-einzel lens combination. The paper will report on the results of these changes.
 
 
WEP270 A High Current Density Li+ Alumino-silicate Ion Source for Target Heating Experiments 1981
 
  • P.K. Roy, W.G. Greenway, J.W. Kwan, P.A. Seidl, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: This work was performed under the auspices of the U.S Department of Energy by LLNL under contract DE AC52 07NA27344, and by LBNL under contract DE-AC02-05CH11231.
The NDCX-II accelerator has been designed for target heating experiments in the warm dense matter regime. It will use a large diameter (≈ 10.9 cm) Li+ doped alumino-silicate source with a pulse duration of 0.5 μs, and beam current of ≈ 93 mA. Characterization of a prototype lithium alumino-silicate sources is presented. Using 6.35 mm diameter prototype emitters (coated and sintered on a ≈ 75% porous tungsten substrate), at a temperature of ≈1275° C, a space-charge limited Li+ beam current density of ≈ 1 mA/cm2 was measured. At higher extraction voltage, the source is emission limited at around ≈ 1.5 mA/cm2, weakly dependent on the applied voltage. The lifetime of the ion source is ≈ 50 hours while pulsing the extraction voltage at 2 to 3 times per minute. Measurements under these conditions show that the lifetime of the ion source does not depend only on beam current extraction, and lithium loss may be dominated by neutral loss or by evaporation. The thickness of the coating does not affect the emission density. It is inferred that pulsed heating, synchronized with the beam pulse rate may increase the life time of a source.
 
 
WEP271 Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator 1984
 
  • O. Waldmann, B.A. Ludewigt
    LBNL, Berkeley, California, USA
 
  Funding: Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
A microwave ion source has been designed and constructed for use with a sealed-tube, high-yield neutron generator. When operated with a tritium-deuterium gas mixture the generator will be capable of producing 5 · 1011 n/s in non-proliferation applications. Microwave ion sources are well suited for such a device because they can produce high extracted beam currents with a high atomic fraction at low gas pressures of 0.2 − 0.3 Pa required for sealed tube operation. The magnetic field strength for achieving electron cyclotron resonance (ECR) condition, 87.5 mT at 2.45 GHz microwave frequency, was generated and shaped with permanent magnets surrounding the plasma chamber and a ferromagnetic plasma electrode. This approach resulted in a compact ion source that matches the neutron generator requirements. The needed proton-equivalent extracted beam current density of 40 mA/cm2 was obtained at moderate microwave power levels of ∼ 400W. Results on magnetic field design, pressure dependency and atomic fraction measured for different wall materials are presented.
 
 
WEP273 Saddle RF Antenna H Ion Source Progress 1987
 
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Batavia, USA
  • S. Murray, T.R. Pennisi, M. Santana, M.P. Stockli, R.F. Welton
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: Supported in part by USDOE Contract DE-AC05-00OR22725 and STTR Grant DE-SC0002690
In this project we are developing an RF H surface plasma source (SPS) with saddle (SA) RF antenna which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with a small AlN test chamber and different antennasandmagneticfieldconfigurationsweretestedin the SNS ion source Test Stand. A prototype SA SPS was installed in the Test Stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency of 1.6 mA/kW. Control experiments with H beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma source (TPS) has been designed. A Saddle antenna SPS with water cooling is being fabricated for high duty factor testing.
 
 
WEP274 Broadband Antenna Matching Network Design and Application for RF Plasma Ion Source 1990
 
  • K.R. Shin
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.E. Fathy
    University of Tennessee, Knoxville, Tennessee, USA
  • Y.W. Kang, M.F. Piller
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
The RF ion source at Spallation Neutron Source has been upgraded to meet higher beam power requirement. One important subsystem for efficient operation of the ion source is the 2MHz RF impedance matching network. The real part of the antenna impedance is very small and is affected by plasma density for 2MHz operating frequency. Previous impedance matching network for the antenna has limited tuning capability to cover this potential variation of the antenna impedance since it employed a single tuning element and an impedance transformer. A new matching network with two tunable capacitors has been built and tested. This network can allow precision matching and increase the tunable range without using a transformer. A 5-element broadband matching network also has been designed, built and tested. The 5-element network allows wide band matching up to 50 kHz bandwidth from the resonance center of 2 MHz. The design procedure, simulation and test results are presented.
 
 
WEP275 Highly-Persistent SNS H Source Fueling 1-MW Beams with 7-9 kC Service Cycles 1993
 
  • M.P. Stockli, T.W. Hardek, Y.W. Kang, S.N. Murray, T.R. Pennisi, M.F. Piller, M. Santana, R.F. Welton
    ORNL, Oak Ridge, Tennessee, USA
  • B. Han
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
Running routinely with ~40-mA, 1-MW beams, the SNS linac is fed from the ion source with ~1ms long, ~50-mA H beam pulses at 60 Hz. This requires the daily extraction of ~230 C of H ions, which exceeds the routine daily production of other H accelerator sources by almost an order of magnitude. The source service cycle has been extended from 2, to 3, to 4, and up to 5.6 weeks without age-related failures. The 7-9 kC of H ions delivered in single service cycles exceed the service cycle yields of other accelerator sources. The paper discusses the findings as well as the issues and their mitigations, which enabled the simultaneous increase of the beam current, the duty factor, the availability, and the service cycle.
 
 
WEP276 Development of an Advanced Barium Ion Source for a Laser-Induced-Fluorescence (LIF) Diagnostic on the Paul Trap Simulator Experiment (PTSX) 1996
 
  • H. Wang, R.C. Davidson, P. Efthimion, E.P. Gilson, R. M. Majeski
    PPPL, Princeton, New Jersey, USA
 
  The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap that simulates the nonlinear transverse dynamics of intense charged particle beam propagation through an equivalent kilometers-long magnetic alternating-gradient (AG) focusing system. Understanding the collective dynamics and instability excitations of intense charged particle beam is of great importance for a wide variety of accelerator applications. Since the optical spectrum of barium ions is better-suited to the Laser-Induced-Fluorescence (LIF) diagnostic than cesium ions, a barium ion source is being developed to replace the cesium ion source. A Laser-Induced-Fluorescence diagnostic will be able to provide in situ measurement of the radial density profile and, ultimately, the velocity distribution function of the intense charged particle beam. The new barium ion source is expected to increase the ion density as well as minimize the number of neutral barium atoms which enter the PTSX vacuum chamber. The design includes an ionizer, an extractor, and a neutral gas filter scheme. Initial test results of this new barium ion source will be presented.  
 
FROAN3 High-Intensity, High-Brightness Polarized and Unpolarized Beam Production in Charge- Exchange Collisions 2555
 
  • A. Zelenski, G. Atoian, J. Ritter, D. Steski, V. Zubets
    BNL, Upton, Long Island, New York, USA
  • V.I. Davydenko, A.V. Ivanov, V.V. Kolmogorov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Basic limitations on the high-intensity H ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na- vapor jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 3-5 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature ~0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A /cm2 (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H beam with 36 mA current, 5 keV energy and ~1.0 cm-mrad normalized emittance was obtained using the flat grids and magnetic focusing. The experimental results of the high-intensity neutral hydrogen beam generation and studies of the charge-exchange polarization processes of this intense beam will be presented.
 
slides icon Slides FROAN3 [6.093 MB]