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Abstract 
An accelerator based 14-MeV neutron generator, for 

fusion neutronics studies is being developed at IPR. ECR 
ion source is used to generate deuterium plasma. Electron 
density and temperature in the ECR plasma are measured 
using non-intrusive spectroscopic methods. Langmuir 
probes, though conventionally used for estimating local 
parameters in low-pressure microwave plasmas, are 
difficult to implement here owing to space constraint and 
heating of the probe from interaction with standing 
microwaves. Pure helium (He), He seeded hydrogen and 
deuterium plasmas are studied. Spectra for entire visible 
range are recorded for different fill pressures for a 
constant microwave power and different powers for a 
constant fill pressure. For optically thin plasmas of low 
density, line intensity ratio method can be used with 
appreciable reliability. CR model is used from ADAS 
(atomic data and analysis structure) to predict plasma 
parameters from suitable line ratios.  

INTRODUCTION 
Langmuir probes are used conventionally for the 

measurement of local electron temperatures. However, in 
cavity based microwave plasmas, like in the ECR ion 
source, radial probes are difficult to implement as the 
plasma is formed in the cusp of the hexapole magnet. 
Further, the interaction of the standing microwaves with 
the cavity material may lead to heating and in some cases 
even melting of the probe. Even axial Langmuir probes 
are not feasible, owing to the space constraint inside the 
helical antenna. Also, such probes may perturb the plasma 
and actual plasma parameters will not be measured. 
Additional complications arising due to the interaction of 
the plasma with the probe have also been encountered, 
resulting into sputtering of material from probe tip at high 
microwave power, contamination and erosion of the probe 
tip etc. Hence, to avoid these problems, non-invasive 
spectroscopic methods are highly sought for. Contrary to 
probes, spectroscopic measurements are not affected by 
the microwave, do not interact and hence do not 
contaminate or perturb the plasma and subsides the odds 
of catastrophic failures due to probe melting. In 
spectroscopic techniques, a spectrograph combined with 
an optical fiber and a sensor is used to collect emissions 
remotely so there is no interference with the plasma 
environment.  

In this experiment, neutral helium (HeI) spectra are 
recorded and line emissions from various singlet and 
triplet states are measured. Specific intensity ratios are 

used to infer the electron temperature and electron density 
of the plasma and compared with earlier measurements 
with similar microwave ECR ion sources [1]. 

EXPERIMENTAL SETUP 
The microwave is transported in the ECR ion source 

through a rectangular hollow wave guide to power 
circular wave guide. A three port circulator with the 
dummy load is used to protect the magnetron from the 
reflected power. Microwave system consists of a 
combination of a high voltage and high vacuum window 
and cross bar transition from rectangular wave guide to 
coaxial line with gas inlet at the dead end of the 
transition. At the end of the coaxial line a slow-wave 
structure is connected which will radiate circularly 
polarized     microwave in axial direction. The microwave 
power applied was 288 watt.  

The magnet system of the ECR source is made from 
high remanence (1.12T), high corcivity (1920 kA/m) 
NdFeB permanent magnet material. It consists of two 
radially magnetized rings producing an axial magnetic 
field of 2.14 kG at the maximum with a mirror ratio of 
2.85. The Hexapole magnet for radial component is made 
from same block and induced a maximum magnetic field 
of 5kG inside the plasma chamber [2-3]. A schematic of 
the ECR ion source with the spectroscopic setup is shown 
in Figure 1. 

At the other end of the vacuum chamber, the light 
emitted is relayed by an optical fiber through an optical 
port to a 0.5 m Czerny-Turner visible spectrometer 
(resolution 2.5 Å) fitted with a CCD camera, which had 
been calibrated for intensity measurements. Since the line 
of sight was axial hence local measurement of the plasma 
parameters were not possible, instead, an average 
estimation of the parameters were obtained. This should 
suffice for a general characterization of the ECR source. 

Gas pressure during the experiment was varied from 
2.7 × 10-5 to 6.2 × 10-5 mbar at the distant end of the 
vacuum chamber where the turbo molecular pump (TMP) 
is connected and 5.0 × 10-4 to 3 × 10-3 mbar at gas inlet of 
the ion source, keeping the microwave power constant 
throughout. Several combinations of input gases like, pure 
helium, helium seeded hydrogen and helium seeded 
deuterium are tested with the present setup. Results for 
the highest operating pressure (3 × 10-3 mbar) and for 
pure helium plasma are presented here. 
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