Author: Mori, W.B.
Paper Title Page
MOP016 Preliminary Simulations of Plasma Wakefield Accelerator Experiments at FACET 136
 
  • W. An, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California, USA
  • M.J. Hogan
    SLAC, Menlo Park, California, USA
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work is supported by USDoE under DE-FC02-07ER41500, DE-FG02-92ER40727 and NSF under NSF PHY-0904039, PHY-0936266.
Recent experiments on former facility FFTB at SLAC has demonstrated that a single electron beam driven Plasma Wakefield Accelerator (PWFA) can be produced with an accelerating gradient of 52 GeV/m over a meter-long scale*. If another electron bunch is properly loaded into such a wakefield, it will obtain a high energy gain in a short distance as well as a small energy spread. Such PWFA experiment with two bunches will be performed in FACET, which is a new facility at SLAC**. Simulation results show that with possible beam parameters in FACET the first electron bunch (with less current than that in the FFTB experiment) can still produce a meter-long plasma column with a density of 5x1016 cm-3 via field ionization when we use a gas with a lower ionization energy. The second electron bunch can have a 10 GeV energy gain with a very narrow energy spread. If a pre-ionized plasma is used instead of the neutral gas, the energy gain of the second bunch can be enhanced to 30 GeV.
* I. Blumenfeld et al., Nature 445, 741 (2007).
** M. J.Hogan, et al.,NewJ. Phys.12, 055030(2010).
 
 
MOP081 Proton Acceleration by Trapping in a Relativistic Laser Driven Uphill Plasma Snowplow 247
 
  • A. Sahai, T.C. Katsouleas
    Duke ECE, Durham, North Carolina, USA
  • W.B. Mori, A. Tableman, J. Tonge, F.S. Tsung
    UCLA, Los Angeles, California, USA
 
  We explore a novel regime of proton and ion acceleration off of overdense Plasma created by a Laser pulse. In Coulomb explosion, Target Normal Sheath, Acoustic shock acceleration regimes the protons are neither high-energy nor monoenergetic enough for applications such as hadron radiation therapy, fast ignition fusion research and particle physics. This calls out for exploration of effective regimes of acceleration. The proposed Snowplow regime of acceleration uses a Snowplow of charge created by a relativistic Laser pulse at the critical density on a uphill Plasma density gradient. The relativistically moving Snowplow's space charge drags the protons and its velocity can be controlled to effectively trap the protons using laser pulse shape and the uphill density profile. We describe the principles behind this mechanism. We derive analytical expressions for the Snowplow velocity and its dependence on the parameter space. We primarily explore the density gradient and laser pulse shape to optimally accelerate protons from rest to the desired velocities. Preliminary, 1-D simulation results are presented and analyzed.  
 
MOP088 A High Transformer Ratio Plasma Wakefield Accelerator Scheme for FACET 265
 
  • R.J. England, J.T. Frederico, M.J. Hogan
    SLAC, Menlo Park, California, USA
  • W. An, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California, USA
  • P. Muggli
    USC, Los Angeles, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515
The ideal drive beam current profile for the plasma wakefield accelerator (PWFA) has been predicted by 1D and 2D simulations to be characterized by a triangular ramp that rises linearly from head to tail, followed by a sharp drop. A technique for generating such bunches experimentally was recently demonstrated. We present here an adaptation of this scheme to generate ramped bunches using the 23 GeV electron beam produced in the first two-thirds of the SLAC linac, and discuss plans to implement this scheme for high transformer ratio demonstration experiments at the FACET plasma wakefield accelerator facility.
 
 
MOP101 Numerical Study of Self and Controlled Injection in 3-Dimensional Laser-Driven Wakefields 286
 
  • A.W. Davidson, R. Fenseca, C. Joshi, W. Lu, J.L. Martins, W.B. Mori, L.O. Silva
    UCLA, Los Angeles, California, USA
 
  Funding: DOE and NSF
In plasma based accelerators (LWFA and PWFA), the methods of injecting high quality electron bunches into the accelerating wakefield is of utmost importance for various applications. Understanding how injection occurs in both self and controlled scenarios is therefore important. To simplify this understanding, we start from single particle motion in an arbitrary traveling wave wakefields, an electromagnetic structure with a fixed phase velocity(e.g., wakefields driven by non-evolving drivers), and obtain the general conditions for trapping to occur. We then compare this condition with high fidelity 3D PIC simulations through advanced particle and field tracking diagnostics. Numerous numerical convergence tests were performed to ensure the correctness of the simulations. The agreement between theory and simulations helps to clarify the role played by driver evolution on injection, and a physical picture of injection first proposed in * is confirmed through simulations. Several ideas, including ionization assisted injection, for achieving high quality controlled injection were also explored and some simulation results relevant to current and future experiments will be presented.
*W. Lu et al., PRSTAB 10, 061301, 2007
 
 
MOP106 Electron Acceleration via Positron Driven Plasma Wakefield Accelerator 295
 
  • S.F. Pinkerton, P. Muggli
    USC, Los Angeles, California, USA
  • W. An, W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by US DoE and NSF.
We show that a positron bunch with parameters accessible at FACET can excite a stable plasma wakefield over a few meters and a witness electron bunch experiences an accelerating gradient on the order of 10 GeV/m. Initial simulations show that the positron drive bunch is strongly affected by the transverse components of the wakefield: the positron bunch evolves significantly, which affects both the wakefield and witness bunch dynamics. Various solutions are presented, of which the positron-electron train shceme generates a desirable wakefield.
 
 
MOP108 Simulation Study of Proton-Driven PWFA Based on CERN SPS Beam 301
 
  • G.X. Xia, A. Caldwell
    MPI-P, München, Germany
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  We have proposed an experimental study of the proton-driven plasma wakefield acceleration by using proton beam from the CERN SPS. In this paper, the particle-in-cell (PIC) simulation of the SPS beam-driven plasma wakefield acceleration is introduced. By varying the beam parameters and plasma parameters, simulation shows that electric fields in excess of 1 GeV/m can be achieved.  
 
MOP143 Enhanced Laser-Driven Ion Acceleration via Forward Raman Scattering in a Ramped Gas Target 358
 
  • S. Tochitsky, D.J. Haberberger, C. Joshi, W.B. Mori, F.S. Tsung
    UCLA, Los Angeles, California, USA
 
  Funding: This work is supported by DOE grant DE-FG02-92ER40727.
CO2 laser-plasma interactions provide a unique parameter space for using a gas jet for Target Normal Sheath Acceleration (TNSA) of ions instead of a thin foil target. The generation of 1-5 MeV protons from the interaction of a 3 ps TW CO2 laser pulse with a gas target with a peak density around the critical plasma density (1019 cm-3) has been studied by 2D particle-in-cell simulations. The proton acceleration in the preformed plasma, having similar to the gas jet symmetric, linearly ramped density distribution, occurs via formation of a sheath of hot electrons on the back surface of the target. The maximum energy of the hot electrons and, hence net acceleration of protons is mainly defined by Forward Raman scattering instability in the underdense part of the plasma. This mechanism of an additional heating of electrons is strongly affected by nonlinear laser-plasma interactions and results in the proton energy enhancement by more than an order of magnitude in comparison with the regular ponderomotive force scaling of TNSA. Forward directed ion beams from a gaseous target can find an application as a high-brightness ion source-injector.
 
 
MOP158 Numerical Study of Plasma Wakefields Excited by a Train of Electron Bunches 391
 
  • Y. Fang, P. Muggli
    USC, Los Angeles, California, USA
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by the US department of Energy
We study numerically the excitation of plasma wakefields by a train of electron bunches using the UCLA particle-in-cell code Quickpic*. We aim to find an optimal regime that combines both the advantages of linear and non-linear plasma wakefield accelerator. On one hand, the longitudinal electric field excited by individual bunches add as in the linear region, and the transformer ratio can be maximized (i.e. much larger than 2) by adjusting the number of particles in the bunches as well as their distance. On the other hand, the bunches create large wakefield independent of transverse sizes evolution while propagating through the plasma as in the non-linear region. In principle, such a scheme can multiply the energy of the witness bunch following the drive bunch train in a single plasma wakefield accelerating stage. The parameters for electron bunches are chosen based on the current experiment at the Brookhaven National Laboratory Accelerator Test Facility (ATF), where this scheme can be tested. Detailed simulation results will be presented.
* C. Huang, J. Comp. Phys.
 
 
MOP162 Betatron Radiation from an Off-axis Electron Beam in the Plasma Wakefield Accelerator 400
 
  • Y. Shi, O. Chang, P. Muggli
    USC, Los Angeles, California, USA
  • W. An, C. Huang, W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: supported by US DoE
In the non-linear or blow-out regime of a plasma wakefield, the electrons of the accelerated bunch oscillate in a pure ion column. It was demonstrated that a single bunch can emit betatron radiation in the keV to MeV range*. In a drive/witness bunch system, the witness bunch can be injected into the ion column with a transverse momentum or initial radial offset, so that the whole bunch oscillates about the column axis as one marcro-electron. This results in a larger emitted power and higher photon energy. The energy loss due to radiation can be compensated for by the energy gain from the wakefield so that the emission process can be sustained over long distance. Detailed results will be presented about the characteristics of the witness bunch oscillations and radiation through numerical simulations** and calculations.
* S.Q. Wang, et al., Phys. Rev.Let., 88(13), 135004,(2002), D. K. Johnson et al., Phys. Rev. Lett. 97(17), 175003, (2006)
** C.H. Huang, et al., J. Comp. Phys., 217(2), 658, (2006)
 
 
WEP126 Progress in Experimental Study of Current Filamentation Instability 1719
 
  • B.A. Allen, P. Muggli
    USC, Los Angeles, California, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • J.L. Martins, L.O. Silva
    IPFN, Lisbon, Portugal
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by Department of Energy and National Science Foundation
Current Filamentation Instability, CFI, is of central importance for the propagation of relativistic electron beams in plasmas. CFI could play an important role in the generation of magnetic fields and radiation in the after-glow of gamma ray bursts and also in energy transport for the fast-igniter inertial confinement fusion concept. Simulations were conducted with the particle-in-cell code QuickPIC* for e- beam and plasma parameters at the Brookhaven National Laboratory – Accelerator Test Facility, BNL-ATF. Results show that for a 2cm plasma the instability reaches near saturation. An experimental program was proposed and accepted at the BNL-ATF and an experiment is currently underway. There are three components to the experimental program: 1) imaging of the beam density/filaments at the exit from the plasma, 2) measurement and imaging of the transverse plasma density gradient and measurement of the magnetic field and 3) identifying the radiation spectrum of the instability. Preliminary results from phase one will be presented along with the progress and diagnostic design for the following phases of the experiment.
* C. Huang et. al. Journal of Computational Physics 217, 2(2006)
 
 
THOAN1
Tutorial on Plasma-Based Accelerators  
 
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  The speaker will present a tutorial on plasma-based accelerators driven by particle and laser beams, targeted to a general audience of students, engineers, and physicists.  
slides icon Slides THOAN1 [20.309 MB]  
 
TUOBN1 Laser Wakefield Acceleration Beyond 1 GeV using Ionization Induced Injection 707
 
  • K.A. Marsh, C.E. Clayton, C. Joshi, N. Lemos, W. Lu, W.B. Mori, A.E. Pak
    UCLA, Los Angeles, California, USA
  • F. Albert, T. Doeppner, C. Filip, D.H. Froula, S.H. Glenzer, B.B. Pollock, D. Price, J.E. Ralph
    LLNL, Livermore, California, USA
  • R.A. Fonseca, S.F. Martins
    Instituto Superior Tecnico, Lisbon, Portugal
  • L.O. Silva
    IPFN, Lisbon, Portugal
 
  Funding: Supported by DOE Grants No. DE-AC52-07NA27344, DE-FG03-92ER40727, DE-FG02-92ER40727, DE-FC02-07ER41500, DE-FG52-09NA29552, NSF Grants No. PHY-0936266, PHY-0904039 and FCT, Por., No. SFRH/BD/35749/2007
A series of laser wakefield accelerator experiments leading to electron energy exceeding 1 GeV are described. Theoretical concepts and experimental methods developed while conducting experiments using the 10 TW Ti:Sapphire laser at UCLA were implemented and transferred successfully to the 100 TW Calisto Laser System at the Jupiter Laser Facility at LLNL. To reach electron energies greater than 1 GeV with current laser systems, it is necessary to inject and trap electrons into the wake and to guide the laser for more than 1 cm of plasma. Using the 10 TW laser, the physics of self-guiding and the limitations in regards to pump depletion over cm-scale plasmas were demonstrated. Furthermore, a novel injection mechanism was explored which allows injection by ionization at conditions necessary for generating electron energies greater than a GeV. The 10 TW results were followed by self-guiding at the 100 TW scale over cm plasma lengths. The energy of the self-injected electrons, at 3x1018 cm-3 plasma density, was limited by dephasing to 720 MeV. Implementation of ionization injection allowed extending the acceleration well beyond a centimeter and 1.4 GeV electrons were measured.
 
slides icon Slides TUOBN1 [2.488 MB]  
 
TUOBN4 Plasma Wakefield Experiments at FACET 715
 
  • M.J. Hogan, R.J. England, J.T. Frederico, C. Hast, S.Z. Li, M.D. Litos, D.R. Walz
    SLAC, Menlo Park, California, USA
  • W. An, C.E. Clayton, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, S. Tochitsky
    UCLA, Los Angeles, California, USA
  • P. Muggli, S.F. Pinkerton, Y. Shi
    USC, Los Angeles, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to ~20μm long and focused to ~10μm wide. The intense fields of the FACET bunches will be used to field ionize neutral lithium or cesium vapor produced in a heat pipe oven. Previous experiments at SLAC demonstrated 50GeV/m gradients in an 85cm field ionized lithium plasma where the interaction distance was limited by head erosion. Simulations indicate the lower ionization potential of cesium will decrease the rate of head erosion and increase single stage performance. The initial experimental program will compare the performance of lithium and cesium plasma sources with single and double bunches. Later experiments will investigate improved performance with a pre-ionized cesium plasma. The status of the experiments and expected performance are reviewed.
 
slides icon Slides TUOBN4 [13.080 MB]  
 
TUOBN5 A Proposed Experimental Test of Proton-Driven Plasma Wakefield Acceleration Based on CERN SPS 718
 
  • G.X. Xia, A. Caldwell
    MPI-P, München, Germany
  • W. An, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California, USA
  • R.W. Assmann, F. Zimmermann
    CERN, Geneva, Switzerland
  • R.A. Fonseca, N.C. Lopes, J. Vieira
    Instituto Superior Tecnico, Lisbon, Portugal
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • K.V. Lotov
    BINP SB RAS, Novosibirsk, Russia
  • P. Muggli
    USC, Los Angeles, California, USA
  • A.M. Pukhov
    HHUD, Dusseldorf, Germany
  • L.O. Silva
    IPFN, Lisbon, Portugal
 
  Proton-driven plasma wakefield acceleration (PDPWA) has been proposed as an approach to accelerate electron beam to TeV energy regime in a single passage of plasma channel. An experimental test is recently proposed to demonstrate the capability of PDPWA by using proton beams from the CERN SPS. The preparation of experiment is introduced. The particle-in-cell simulation results based on realistic beam parameters are presented.  
slides icon Slides TUOBN5 [2.208 MB]