Laser Wakefield Acceleration Beyond 1 GeV Using Ionization Induced Injection

Ken Marsh - University of California Los Angeles Electrical Engineering

Collaboration

Kenneth Marsh, Chris Clayton, Chan Joshi, Wei Lu, Warren Mori, Art Pak (UCLA, Los Angeles, California),

Bradley Pollock (UCSD, La Jolla, California; LLNL, Livermore, California)

Felicie Albert, Tilo Doeppner, Catalin Filip, Dustin Froula Siegfried Glenzer, Dwight Price, Joseph Ralph (LLNL, Livermore, California)

Luis O. Silva (GoLP, Lisbon), Nuno Lemos (GoLP, Lisbon; UCLA, Los Angeles, California)

Ricardo A. Fonseca, Samuel de Freitas Martins (Instituto Superior Tecnico, Lisbon),

Overview

- Review of LWFA in the blow out regime
- Show blow out regime equations correctly predict experimental results. Self guiding. An essential feature of blow out regime. Energy gain.
- Why ionization injection experiments?

Self-injection experiments require a large wake potential and $a_0 > 3$ Ionization injection can be done at lower laser power. $3 > a_0 > 1$

For the same laser power; Self-injection experiments require higher density. $P/P_c > 4$ Ionization injection can be done at lower density and achieve higher energy gain.

- Methods to reduce energy spread
- Staged injection experiment at LLNL

Description of the Blowout Regime

- A short laser pulse traveling in an underdense plasma where the 3D radiation pressure causes complete electron cavitation.
- Creates a stable self-guided structure

For $a_0 > 2$

- The wake retains a spherical shape with linear accelerating and focusing fields. $a_0 > 3$
- High energy self-trapped electrons are a common feature when

 a_0 : \sqrt{I} normalized vector potential

The relativistic ponderomotive force equation

$$\frac{dn(r,z)}{n} = k_p^{-2} \nabla^2 (1 + a_0^2 / 2)^{1/2}$$
Results in 3D for $a_0 > 2$

$$dn / n \; ; \; -1$$

$$k_p R_b \; ; \; k_p w_0 \; ; \; 2\sqrt{a_0}$$
Matching Condition

Equations for Self-Guiding and Pump Depletion

Self-guiding Matched Beam Equations

$$k_p^2 w_0^2$$
; $4a_0$

 $a_0 = 2(P / P_c)^{1/3}$

The matched spot size w₀ has a weak dependence on laser power.

$$k_p w_0 = 2\sqrt{2} (P / P_c)^{1/6}$$

critical power for self-focusing

$$P_c(GW) = 17\omega_0^2 / \omega_p^2$$

Pump Depletion Equation

$$L_{pd} = \omega_0^2 / \omega_p^2 c \tau$$

Pump depletion length based on pulse etching due to localized pump depletion

Experimental Laser Parameters

What is the UCLA Terawatt Ti:Sapphire Laser?

Max power 10 TW Pulse width FWHM 40-50 fs Max Intensity 1.8x10¹⁹ Watts/cm² Useful normalized vector potential 1.5 to 2.8

What is the LLNL Callisto Ti:Sapphire Laser?

Max power 200 TW Pulse width FWHM 60 fs Max Intensity 3x10¹⁹ Watts/cm² Useful normalized vector potential 2 to 3.5

The normalized vector potential

$$a_0 = 8.6 \times 10^{-10} \sqrt{I(W/cm^2)} \lambda(\mu m)$$

Limited by P/Pc > 1

and pump depletion $L_{pd}=\omega_0^2$ / $\omega_p^2 c au$

Energy gain equations

Dephasing length

$$L_d$$
; $\frac{2}{3} \frac{\omega_0^2}{\omega_p^2} R_b$

Maximum useful electric field

$$\frac{eE_{\max}}{mc\omega_p} = \sqrt{a_0}$$

On axis electric field

$$E(z)$$
; $E_{\max} \frac{z}{R_b}$

W. Lu PRSTAB(2007)

Maximum energy gain

$$\Delta W = \frac{2}{3} \frac{\omega_0^2}{\omega_p^2} a_0 mc^2$$

$$\Delta W = \frac{4}{3} \frac{\omega_0^2}{\omega_p^2} (P / P_c)^{1/3} mc^2$$

$$\Delta W \propto P^{1/3} (1/n)^{2/3}$$

PAC 2011

Energy Gain Measurements at LLNL Callisto Laser

Energy gain experiments with self trapped electrons

Experimental challenges and Limitations

- imperfect beam spot size and aberrations reduce coupling
- simulations show laser evolves for some distance before trapping occurs
- for maximum energy gain you need the lowest possible density
- self-trapping energy gain limited by $P/P_c > 4$

Why How Ionization Injection

<u>Why</u>

- Self injection requires $a_0 > 3$ or $P/P_c > 4$
- Ionization injection can be done at lower density. $P/P_c > 1$
- For the same laser power, electrons can reach higher energy by using ionization injection .

<u>How</u>

• Electrons from the K shell of Nitrogen can be tunnel ionized near the peak of the laser pulse and trapped by the wake.

Electron's Change in Potential

$$\Delta \Psi = -\int_{z_i}^{z_f} E_{\max} \frac{z}{R_b} dz$$

Electrons are trapped when $v_e = v_{\phi}$

Background electron

Injected electron

Normalized Trapping Condition

$$\Delta \Psi = \frac{\sqrt{1 - p_{\perp f}^2}}{\gamma_{\phi}} - 1$$
$$\approx -1$$

Experimental Setup UCLA Ti:Sapphire Laser

Ti:sapphire laser

 λ_{o} = 815 nm

Pulse width = 40-50 fs

Power $\leq 10 \text{ TW}$

Spot size $w_o = 6 \mu m$

a_o≤2.6

Gas jet target 1-2 mm

Gas used: 90:10 and 95:05 He:N₂ gas mix.

Ionization Injection Results From UCLA

- Measured charge above 25 MeV
- Simulated charge above 25 MeV
 - Required a_o for ionizing N^{6+,7+}
- Threshold for Argon trapping

- •Agreement with 3-D OSIRIS simulations
- Continuous electron energy spectrum

Test Lower Bound for Ionization Injection

Want to see if ionization injection works for $a_0 < 1$

Ionization Threshold of Argon and Nitrogen

Change in potential as a function of a_0

$$\Delta \Psi = -a_0 (1 - z_i^2 / R_b^2)$$

For trapping

 $\Delta \Psi \approx -1$

In practice $R_b / 2 < z_i < 3R_b / 4$

Therefore trapping threshold for a_0 is between 1.3 and 2.3 regardless of the impurity ionization threshold?

*(A. Pak dissertation)

Ionization Injection Experiment with the Callisto Laser 110 TW 1.3x10¹⁸ cm⁻³ 1.3 cm gas cell 3% O₂ impurity

Methods to Reduce the Energy Spread

• Turn off injection after a short propagation distance

In a LWFA where weak self guiding occurs, the electric field will quickly fall below the ionization threshold for K shell electrons.

Using a circular polarized laser can reduce the ionizing electric field by $\sqrt{2}$ without changing laser intensity.

Staged injection + accelerator

Want to avoid Continuous Ionization.

Circular Polarization Reduces Field Amplitude While Maintaining Intensity.

• Need a relatively high intensity for selfguiding.

•Want to lower the field amplitude to limit ionization distance.

- •Field amplitude drops by $\sqrt{2}$
- Intensity is unchanged.

Comparison of Linear vs Circular Polarized Laser

UCLA Proof of Principle Experiment

- peak $a_o = 1.8$ circular, 2.5 linear
- 1 mm gas jet
- n_e ~ 2 x 10¹⁹ cm⁻³
- Gas mixture 95:05 He:N₂
- P/P_c < 4

Simulations to Optimize the Energy Spread of Electron Beam

PAC 2011

Comparison of Ionization Injection for Circular and Linear Polarization

Staged Injection LWFA

- The idea is to have a short first stage which contains a trace impurity gas for ionization injection.
- The second stage is pure helium where a₀ is below the threshold for self injection.
- A 2D OSIRIS simulation demonstrates the concept

Staged Injection LWFA

Summary of Results

- Experimentally and in simulations we have verified many the physical effects and equations for LWFA in the blow out regime.
- Matched beam condition and self guiding
- Pump depletion
- Max energy gain with self injection
- Minimum a₀ for ionization injection
- Continuous energy gain up to 1.5 GeV with ionization injection
- Circular polarized ionization injection with narrow energy spread
- Staged ionization injection with narrow energy spread

And More

• Brad Pollocks talk, Wednesday 9:30 and Warren Mori, LWFA tutorial Thursday 8:30

